Главная · Электробезопасность · С большим значением силы тока. Закон Ома для действующих и амплитудных значений тока и напряжения

С большим значением силы тока. Закон Ома для действующих и амплитудных значений тока и напряжения

Темы кодификатора ЕГЭ : переменный ток, вынужденные электромагнитные колебания.

Переменный ток - это вынужденные электромагнитные колебания, вызываемые в электрической цепи источником переменного (чаще всего синусоидального) напряжения.

Переменный ток присутствует всюду. Он течёт по проводам наших квартир, в промышленных электросетях, в высоковольтных линиях электропередач. И если вам нужен постоянный ток, чтобы зарядить аккумулятор телефона или ноутбука, вы используете специальный адаптер, выпрямляющий переменный ток из розетки.

Почему переменный ток распространён так широко? Оказывается, он прост в получении и идеально приспособлен для передачи электроэнергии на большие расстояния. Подробнее об этом мы поговорим в листке, посвящённом производству, передаче и потреблению электрической энергии.

А сейчас мы рассмотрим простейшие цепи переменного тока. Будем подключать к источнику переменного напряжения поочерёдно: резистор сопротивлением , конденсатор ёмкости и катушку индуктивности . Изучив поведение этих элементов, мы в следующем листке подключим их одновременно и исследуем прохождение переменного тока через колебательный контур, обладающий сопротивлением.

Напряжение на клеммах источника меняется по закону:

(1)

Как видим, напряжение может быть положительным и отрицательным. Каков смысл знака напряжения?

Всегда подразумевается, что выбрано положительное направление обхода контура. Напряжение считается положительным, если электрическое поле зарядов, образующих ток, имеет положительное направление. В противном случае напряжение считается отрицательным .

Начальная фаза напряжения не играет никакой роли, поскольку мы рассматриваем процессы, установившиеся во времени. При желании вместо синуса в выражении (1) можно было бы взять косинус - принципиально от этого ничего не изменится.

Текущее значение напряжения в момент времени называется мгновенным значением напряжения .

Условие квазистационарности

В случае переменного тока возникает один тонкий момент. Предположим, что цепь состоит из нескольких последовательно соединённых элементов.

Если напряжение источника меняется по синусоидальному закону, то сила тока не успевает мгновенно принимать одно и то же значение во всей цепи - на передачу взаимодействий между заряженными частицами вдоль цепи требуется некоторое время.

Между тем, как и в случае постоянного тока, нам хотелось бы считать силу тока одинаковой во всех элементах цепи. К счастью, во многих практически важных случаях мы действительно имеем на это право.

Возьмём, к примеру, переменное напряжение частоты Гц (это промышленный стандарт России и многих других стран). Период колебаний напряжения: с.

Взаимодействие между зарядами передаётся со скоростью света: м/с. За время, равное периоду колебаний, это взаимодействие распространится на расстояние:

М км.

Поэтому в тех случаях, когда длина цепи на несколько порядков меньше данного расстояния, мы можем пренебречь временем распространения взаимодействия и считать, что сила тока мгновенно принимает одно и то же значение во всей цепи.

Теперь рассмотрим общий случай, когда напряжение колеблется с циклической частотой . Период колебаний равен , и за это время взаимодействие между зарядами передаётся на расстояние . Пусть - длина цепи. Мы можем пренебречь временем распространения взаимодействия, если много меньше :

(2)

Неравенство (2) называется условием квазистационарности . При выполнении этого условия можно считать, что сила тока в цепи мгновенно принимает одно и то же значение во всей цепи. Такой ток называется квазистационарным .

В дальнейшем мы подразумеваем, что переменный ток меняется достаточно медленно и его можно считать квазистационарным. Поэтому сила тока во всех последовательно включённых элементах цепи будет принимать одинаковое значение - своё в каждый момент времени. Оно называется мгновенным значением силы тока .

Резистор в цепи переменного тока

Простейшая цепь переменного тока получится, если к источнику переменного напряжения подключить обычный резистор (мы полагаем, разумеется, что индуктивность этого резистора пренебрежимо мала, так что эффект самоиндукции можно не принимать во внимание) , называемый также активным сопротивлением (рис. 1 )

Рис. 1. Резистор в цепи переменного тока

Положительное направление обхода цепи выбираем против часовой стрелки, как показано на рисунке. Напомним, что сила тока считается положительной, если ток течёт в положительном направлении; в противном случае сила тока отрицательна.

Оказывается, мгновенные значения силы тока и напряжения связаны формулой, аналогичной закону Ома для постоянного тока:

Таким образом, сила тока в резисторе также меняется по закону синуса:

Амплитуда тока равна отношению амплитуды напряжения к сопротивлению :

Мы видим, что сила тока через резистор и напряжение на нём меняются «синхронно», точнее говоря - синфазно (рис. 2 ).


Рис. 2. Ток через резистор совпадает по фазе с напряжением

Фаза тока равна фазе напряжения, то есть сдвиг фаз между током и напряжением равен нулю.

Конденсатор в цепи переменного тока

Постоянный ток через конденсатор не течёт - для постоянного тока конденсатор является разрывом цепи. Однако переменному току конденсатор не помеха! Протекание переменного тока через конденсатор обеспечивается периодическим изменением заряда на его пластинах.

Рассмотрим конденсатор ёмкости , подключённый к источнику синусоидального напряжения (рис. 3 ). Активное сопротивление проводов, как всегда, считаем равным нулю. Положительное направление обхода цепи снова выбираем против часовой стрелки.

Рис. 3. Конденсатор в цепи переменного тока

Как и ранее, обозначим через заряд той пластины конденсатора, на которую течёт положительный ток - в данном случае это будет правая пластина. Тогда знак величины совпадает со знаком напряжения . Кроме того, как мы помним из предыдущего листка, при таком согласовании знака заряда и направления тока будет выполнено равенство .

Напряжение на конденсаторе равно напряжению источника:

Дифференцируя это равенство по времени, находим силу тока через конденсатор:

(3)

Графики тока и напряжения представлены на рис. 4 . Мы видим, что сила тока каждый раз достигает максимума на четверть периода раньше, чем напряжение. Это означает, что фаза силы тока на больше фазы напряжения (ток опережает по фазе напряжение на ).


Рис. 4. Ток через конденсатор опережает по фазе напряжение на

Найти сдвиг фаз между током и напряжением можно также с помощью формулы приведения:

Используя её, получим из (3) :

И теперь мы чётко видим, что фаза тока больше фазы напряжения на .

Для амплитуды силы тока имеем:

Таким образом, амплитуда силы тока связана с амплитудой напряжения соотношением, аналогичным закону Ома:

Величина называется ёмкостным сопротивлением конденсатора. Чем больше ёмкостное сопротивление конденсатора, тем меньше амплитуда тока, протекающего через него, и наоборот.

Ёмкостное сопротивление обратно пропорционально циклической частоте колебаний напряжения (тока) и ёмкости конденсатора. Попробуем понять физическую причину такой зависимости.

1. Чем больше частота колебаний (при фиксированной ёмкости ), тем за меньшее время по цепи проходит заряд ; тем больше амплитуда силы тока и тем меньше ёмкостное сопротивление. При ёмкостное сопротивление стремится к нулю: . Это означает, что для тока высокой частоты конденсатор фактически является коротким замыканием цепи.

Наоборот, при уменьшении частоты ёмкостное сопротивление увеличивается, и при имеем . Это неудивительно: случай отвечает постоянному току, а конденсатор для постоянного тока представляет собой бесконечное сопротивление (разрыв цепи).

2. Чем больше ёмкость конденсатора (при фиксированной частоте), тем больший заряд проходит по цепи за то же время (за ту же четверть периода); тем больше амплитуда силы тока и тем меньше ёмкостное сопротивление.

Подчеркнём, что, в отличие от ситуации с резистором, мгновенные значения тока и напряжения в одни и те же моменты времени уже не будут удовлетворять соотношению, аналогичному закону Ома. Причина заключается в сдвиге фаз: напряжение меняется по закону синуса, а сила тока - по закону косинуса; эти функции не пропорциональны друг другу. Законом Ома связаны лишь амплитудные значения тока и напряжения.

Катушка в цепи переменного тока

Теперь подключим к нашему источнику переменного напряжения катушку индуктивности (рис. 5 ). Активное сопротивление катушки считается равным нулю.

Рис. 5. Катушка в цепи переменного тока

Казалось бы, при нулевом активном (или, как ещё говорят, омическом ) сопротивлении через катушку должен потечь бесконечный ток. Однако катушка оказывает переменному току сопротивление иного рода.
Магнитное поле тока, меняющееся во времени, порождает в катушке вихревое электрическое поле , которое, оказывается, в точности уравновешивает кулоновское поле движущихся зарядов:

(4)

Работа кулоновского поля по перемещению единичного положительного заряда по внешней цепи в положительном направлении - это как раз напряжение . Аналогичная работа вихревого поля - это ЭДС индукции .

Поэтому из (4) получаем:

(5)

Равенство (5) можно объяснить и с энергетической точки зрения. Допустим, что оно не выполняется. Тогда при перемещении заряда по цепи совершается ненулевая работа, которая должна превращаться в тепло. Но тепловая мощность равна нулю при нулевом омическом сопротивлении цепи. Возникшее противоречие показывает, что равенство (5) обязано выполняться.

Вспоминая закон Фарадея , переписываем соотношение (5) :

(6)

Остаётся выяснить, какую функцию, меняющуюся по гармоническому закону, надо продифференцировать, чтобы получить правую часть выражения (6) . Сообразить это нетрудно (продифференцируйте и проверьте!):

(7)

Мы получили выражение для силы тока через катушку. Графики тока и напряжения представлены на рис. 6 .


Рис. 6. Ток через катушку отстаёт по фазе от напряжения на

Как видим, сила тока достигает каждого своего максимума на четверть периода позже, чем напряжение. Это означает, что сила тока отстаёт по фазе от напряжения на .

Определить сдвиг фаз можно и с помощью формулы приведения:

Получаем:

Непосредственно видим, что фаза силы тока меньше фазы напряжения на .

Амплитуда силы тока через катушку равна:

Это можно записать в виде, аналогичном закону Ома:

Пусть источник тока создает переменное гармоническое напряжение (рисунок)

U(t) = U o sinωt . (1)

Согласно закону Ома сила тока на участке цепи, содержащем только резистор сопротивлением R , подключенный к этому источнику, изменяется со временем также по синусоидальному закону:

I(t) = U(t)/R = (U o /R)sinωt = I o sinωt ,

Где I o = U o /R ? амплитудное значение силы тока в цепи.
Как видно, сила тока в такой цепи также меняется с течением времени по синусоидальному закону.
Величины U o и I o = U o /R называются амплитудными значениями напряжения и силы тока. Значения напряжения U(t) и силы тока I(t) , зависящие от времени, называют мгновенными.
Зная мгновенные значения U(t) и I(t) , можно вычислить мгновенную мощность P(t) = U(t)I(t) , которая, в отличие от цепей постоянного тока, изменяется с течением времени.
С учетом зависимости силы тока от времени в цепи перепишем выражение для мгновенной тепловой мощности на резисторе в виде

P(t) = U(t)I(t) = I 2 (t)R = I o 2 Rsin 2 ωt .

Поскольку мгновенная мощность меняется со временем, то использовать эту величину в качестве характеристики длительно протекающих процессов на практике крайне неудобно.
Перепишем формулу для мощности по-другому:

P = UI = U o I o sin 2 ωt = (1/2)U o I o (1 ? cos2ωt) = U o I o /2 ? (U o I o /2)cos2ωt .

Первое слагаемое не зависит от времени. Второе слагаемое? переменная составляющая? функция косинуса двойного угла и ее среднее значение за период колебаний равно нулю (см. рисунок).
Поэтому среднее значение мощности переменного электрического тока за длительный промежуток времени можно найти по формуле

P cp = U o I o /2 = I o 2 /R .

Это выражение позволяет ввести действующие (эффективные) значения силы тока и напряжения, которые используются в качестве основных характеристик переменного тока.
Действующим (эффективным) значением силы переменного тока называется сила такого постоянного тока, который, проходя по цепи, выделяет в единицу времени такое же количество теплоты, что и данный переменный ток.
Поскольку для постоянного тока

P пост =I 2 R ,

То с учетом ранее полученного выражения для среднего значения мощности переменного тока действующее значение силы тока

I д = I o /?2 .

Аналогично можно ввести действующее значение и для напряжения

U д = U o /?2 .

Таким образом, выражения для расчета мощности, потребляемой в цепях постоянного тока, остаются справедливыми и для переменного тока, если использовать в них действующие значения силы тока и напряжения:

P = U д I д = I д 2 R = U д 2 /R, I д = U д /R .

41.1. Треугольники напряжений и сопротивлений.


Амплитуды составляющих общего напряжения:

Действующие значения:

Вектор общего напряжения:

Для того, чтобы найти значение вектора U, построим векторную диаграмму (рис. а). За исходный вектор диаграммы принимаем вектор тока I. Направление этого вектора совпадает с положительнымнаправлением оси, от которой отсчитываются фазовые углы.

Вектор по направлению совпадает с вектором тока I, а вектор направлен перпендикулярно вектору I с положительным углом.

Из диаграммы видно, что вектор общего напряжения U опережает вектор тока I на угол >0, но < , а по величине равен гипотенузе прямоугольного треугольника, катетами которого являются векторы падений напряжения вактивном и индуктивном сопротивлениях и : =Ucos

Проекция вектора напряжения U на направление вектора тока называется активной составляющей вектора напряжения и обозначается Ua. Ua =

Проекция вектора напряжения U на направление, перпендикулярное вектору тока называется реактивной составляющей вектора напряжения и обозначается Up. Up =

Стороны треугольника напряжений, выраженные в единицах напряжения, разделим на ток I. Получим подобный треугольник сопротивлений (рис. б), катетами которого являются активное и индуктивное сопротивления, а гипотенузой – величина .

Отношение действующего напряжения к действующему току данной цепи называется полным сопротивлением цепи. Стороны треугольника сопротивлений нельзя считать векторами, так как сопротивления не являются функциями времени.

Из треугольника сопротивлений следует:

41.2. Полное сопротивление.

Полное сопротивление (Z) - это векторная сумма всех сопротивлений: активного, емкостного и индуктивного.

Полное сопротивление цепи.

41.3. Угол сдвига фаз между напряжением и током.

Аргумент комплексного сопротивления j есть разность начальных фаз напряжения и тока, но его можно также определить по вещественной и мнимой составляющим комплексного сопротивления как j = arctg(X /R ). Следовательно, сдвиг фаз между напряжением и током определяется только параметрами нагрузки и не зависит от параметров тока и напряжения в цепи . Из выражения следует, что положительные значения j соответствуют отставанию тока по фазе, а отрицательные - опережению.

41.4. Закон Ома для действующих и амплитудных значений тока и напряжения.

В активном элементе r происходит необратимое преобразование электрической

энергии в тепловую энергию. Мгновенные значения тока i и напряжения u связаны

законом Ома:

Если ток изменяется по синусоидальному закону тогда напряжение:

С другой стороны мгновенное значение напряжения:

Отсюда получен закон Ома для амплитудных значений: , и закон Ома для действующих значений:

42. Энергетический процесс. Мгновенная, активная, реактивная и полная мощности. Треугольник мощностей. Коэффициент мощности .

Мгновенной мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи
По определению, электрическое напряжение - это отношение работы электрического поля, совершенной при переносе пробного электрического заряда из точки A в точку B, к величине пробного заряда. То есть можно сказать, что электрическое напряжение равно работе по переносу единичного заряда из точки А в точку B. Другими словами, при движении единичного заряда по участку электрической цепи он совершит работу, численно равную электрическому напряжению, действующему на участке цепи. Умножив работу на количество единичных зарядов, мы, таким образом, получаем работу, которую совершают эти заряды при движении от начала участка цепи до его конца. Мощность, по определению, - это работа в единицу времени. Введём обозначения: U - напряжение на участке A-B (принимаем его постоянным на интервале Δt ), Q - количество зарядов, прошедших от А к B за время Δt . А - работа, совершённая зарядом Q при движении по участку A-B, P - мощность. Записывая вышеприведённые рассуждения, получаем:

Для всех зарядов:

Полагая время бесконечно малым, можно принять, что величины напряжения и тока за это время тоже изменятся бесконечно мало. В итоге получаем следующее определение мгновенной электрической мощности:

мгновенная электрическая мощность p (t ), выделяющаяся на участке электрической цепи, есть произведение мгновенных значений напряжения u (t ) и силы тока i (t ) на этом участке:

Активная мощность
Измеряется в W [Вт] Ватт.
Среднее за период T значение мгновенной мощности называется активной мощностью: В цепях однофазного синусоидального тока где U иI - среднеквадратичные значения напряжения и тока, φ - угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S активная связана соотношением

Реактивная мощность

Единица измерения - вольт-ампер реактивный (var, вар)

Реактивная мощность - величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I , умноженному на синус угла сдвига фаз φ между ними: (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает - отрицательным). Реактивная мощность связана с полной мощностью S и активной мощностью Р соотношением: .

Физический смысл реактивной мощности - это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду.

Необходимо отметить, что величина sin φ для значений φ от 0 до плюс 90° является положительной величиной. Величина sin φ для значений φ от 0 до −90° является отрицательной величиной. В соответствии с формулой Q = UI sin φ, реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную - то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например, асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор, являются активно-индуктивными.

Синхронные генераторы, установленные на электрических станциях, могут как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности.

Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения.

Измерительные преобразователи реактивной мощности, использующие формулу Q = UI sin φ, более просты и значительно дешевле измерительных преобразователей на микропроцессорной технике.

Полная мощность

Единица полной электрической мощности - вольт-ампер (V·A, В·А)

Полная мощность - величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах: S = U·I ; связана с активной и реактивной мощностями соотношением: где Р - активная мощность, Q - реактивная мощность (при индуктивной нагрузке Q > 0, а при ёмкостной Q < 0).

Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:

Полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели,распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому номинальная мощность трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.

Мы видели, что мгновенное значение переменного тока все время изменяется, колеблясь между нулем и максимальным значением. Тем не менее мы характеризуем силу переменного тока, как и силу постоянного тока, определенным числом ампер. Мы говорим, например, что в одной лампочке идет ток, равный 0,25 А, а в другой, более мощной, – ток, равный 0,5 А, и т. п. Какой же смысл мы вкладываем в это утверждение? Что означает выражение «сила переменного тока»?

Можно было бы характеризовать силу переменного тока его амплитудой. Принципиально это вполне возможно, но практически очень неудобно, потому что трудно построить приборы, непосредственно измеряющие амплитуду переменного тока. Удобнее использовать для характеристики переменного тока какое-нибудь свойство его, не зависящее от направления тока. Таким свойством является, например, способность тока нагревать проводник, по которому он проходит. Это нагревание не зависит от направления тока, оно производится переменным током при прохождении как в одном направлении, так и в обратном ему.

Представим себе переменный ток, проходящий по некоторому проводнику с сопротивлением . В течение секунды ток выделяет в проводнике определенное количество теплоты, скажем . Пропустим через тот же проводник постоянный ток, подобрав силу его так, чтобы он выделял в проводнике ежесекундно то же количество теплоты . По своему действию оба тока равны; поэтому сила постоянного тока характеризует действующее значение переменного тока, которое обозначают через .

Сила постоянного тока, выделяющего в проводнике то же количество теплоты, что и данный переменный ток, называется действующим значением переменного тока.

Из сказанного следует, что, заменив в формуле (56.1) силу постоянного тока действующим значением переменного тока, мы можем вычислить количество теплоты, выделяемое переменным током в проводнике:

Подчеркнем еще раз, что в этой формуле обозначает действующее значение переменного тока. Когда мы говорим, что переменный ток равен, скажем, 2 А, то мы хотим сказать, что тепловое действие этого тока такое же, как тепловое действие постоянного тока силы 2 А.

В случае синусоидального тока действующее значение тока весьма просто связано с амплитудой этого тока. Соответствующий расчет дает, что

. (154.2)

Таким образом, измерив действующее значение синусоидального тока, можно вычислить по формуле (154.2) его амплитуду.

154.1. В проводнике, имеющем сопротивление 50 Ом, по которому шел переменный ток, за 2,5 ч выделилось количество теплоты, равное 6 кДж. Каково действующее значение тока и какова амплитуда тока?

154.2. В проводнике, имеющем сопротивление 10 Ом, переменный ток выделяет в секунду количество теплоты, равное 1 кДж. Каково действующее значение тока?

154.3. Амплитуда синусоидального переменного тока равна 5 А. Каково его действующее значение?

154.4. Действующее значение переменного синусоидального тока равно 14,2 А. Какова амплитуда этого тока?

Перейдем к более детальному рассмотрению процессов, которые происходят в цепи, подключенной к источнику переменного напряжения.

Пусть цепь состоит из соединительных проводов и нагрузки с малой индуктивностью и большим сопротивлением R (рис. 4.10). Эту величину, которую мы до сих пор называли электрическим сопротивлением или просто сопротивлением, теперь будем называть активным сопротивлением .

Сопротивление R называется активным, потому что при наличии нагрузки, обладающей этим сопротивлением, цепь поглощает энергию, поступающую от генератора. Эта энергия превращается во внутреннюю энергию проводников - они нагреваются. Будем считать, что напряжение на зажимах цепи меняется по гармоническому закону:

u = U m cos ωt.

Как и в случае постоянного тока, мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения. Поэтому для нахождения мгновенного значения силы тока можно применить закон Ома:

В проводнике с активным сопротивлением колебания силы тока совпадают по фазе с колебаниями напряжения (рис. 4.11), а амплитуда силы тока определяется равенством

Мощность в цепи с резистором. В цепи переменного тока промышленной частоты (v = 50 Гц) сила тока и напряжение изменяются сравнительно быстро. Поэтому при прохождении тока по проводнику, например по нити электрической лампочки, количество выделенной энергии также будет быстро меняться со временем. Но этих быстрых изменений мы не замечаем.

Как правило, нам нужно бывает знать среднюю мощность тока на участке цепи за большой промежуток времени, включающий много периодов. Для этого достаточно найти среднюю мощность за один период. Под средней за период мощностью переменного тока понимают отношение суммарной энергии, поступающей в цепь за период, к периоду.

Мощность в цепи постоянного тока на участке с сопротивлением R определяется формулой

Р = I 2 R. (4.18)

На протяжении очень малого интервала времени переменный ток можно считать практически постоянным. Поэтому мгновенная мощность в цепи переменного тока на участке, имеющем активное сопротивление R, определяется формулой

Р = i 2 R. (4.19)

Найдем среднее значение мощности за период. Для этого сначала преобразуем формулу (4.19), подставляя в нее выражение (4.16) для силы тока и используя известное из математики соотношение

График зависимости мгновенной мощности от времени изображен на рисунке 4.12, а. Согласно графику (рис. 4.12, б), на протяжении одной восьмой периода, когда cos 2ωt > 0, мощность в любой момент времени больше, чем Зато на протяжении следующей восьмой части периода, когда cos 2ωt < 0, мощность в любой момент времени меньше, чем Среднее за период значение cos 2ωt равно нулю, а значит равно нулю второе слагаемое в уравнении (4.20).

равна, таким образом, первому члену в формуле (4.20):

Из формулы (4.21) видно, что величина есть среднее за период значение квадрата силы тока:


Величина, равная квадратному корню из среднего значения квадрата силы тока, называется действующим значением силы переменного тока . Действующее значение силы переменного тока обозначается через I:

Равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Действующее значение переменного напряжения определяется аналогично действующему значению силы тока:

Заменяя в формуле (4.17) амплитудные значения силы тока и напряжения на их действующие значения, получаем

Это закон Ома для участка цепи переменного тока с резистором.

Как и при механических колебаниях, в случае электрических колебаний обычно нас не интересуют значения силы тока, напряжения и других величин в каждый момент времени. Важны общие характеристики колебаний, такие, как амплитуда, период, частота, действующие значения силы тока и напряжения, средняя мощность. Именно действующие значения силы тока и напряжения регистрируют амперметры и вольтметры переменного тока.

Кроме того, действующие значения удобнее мгновенных значений еще и потому, что именно они непосредственно определяют среднее значение мощности Р переменного тока:

р = I 2 R = UI.

Колебания силы тока в цепи с резистором совпадают по фазе с колебаниями напряжения, а мощность определяется действующими значениями силы тока и напряжения.

Вопросы к параграфу

1. Чему равна амплитуда напряжения в осветительных сетях переменного тока, рассчитанных на напряжение 220 В?

2. Что называют действующими значениями силы тока и напряжения?