Главная · Электробезопасность · Электрической цепи сложны поэтому лучше. Сложные электрические цепи постоянного тока

Электрической цепи сложны поэтому лучше. Сложные электрические цепи постоянного тока

5.Основные методы анализа линейных электрических цепей.

Значительно упрощают расчет методом контурных токов , так как он позволяет сократить число уравнений.

При расчёте этим методом полагают, что в каждом независимом контуре схемы течёт свой контурный ток. Уравнения составляют относительно контурных токов, после чего через них определяют токи ветвей.

Метод наложения : ток в любой ветви равен алгебраической сумме токов, вызываемых каждой из Э.Д.С. схемы в отдельности. Линейная электрическая цепь описывается системой линейных уравнений Кирхгофа. Это означает, что она подчиняется принципу наложения (суперпозиции), согласно которому совместное действие всех источников в электрической цепи совпадает с суммой действий каждого из них в отдельности.

Метод расчета электрических цепей, в котором за неизвестные принимают потенциалы узлов схемы, называют методом узловых потенциалов . Число неизвестных в методе узловых потенциалов равно числу уравнений, которые необходимо составить для схемы по I закону Кирхгофа. Метод узловых потенциалов, как и метод контурных токов, – один из основных расчетных методов. В том случае, когда п-1 < p (n – количество узлов, p – количество независимых контуров), данный метод более экономичен, чем метод контурных токов.

6. Причины возникновения и сущность переходных процессов.

Переход из одного стационарного состояния в другое происходит не мгновенно, а с течением времени, что обусловлено наличием в цепи накопителей энергии (индуктивностей катушек и ёмкостей конденсаторов). Магнитная энергия катушек и электрическая энергия конденсаторов скачком измениться не могут, т.к. для осуществления этого необходимы источники, имеющие бесконечно большую мощность. Процессы, сопровождающие этот переход, называются переходными .

7. Анализ переходных процессов во временной области. Классический метод

Классический метод расчета переходных процессов основан на составлении и последующем решении (интегрировании) дифференциальных уравнений, составленных по законам Кирхгофа и связывающих искомые токи и напряжения послекоммутационной цепи и заданные воздействующие функции (источники электрической энергии. Преобразуя систему уравнений, можно вывести итоговое дифференциальное уравнение относительно какой-либо одной переменной величины x (t ):

Здесь n – порядок дифференциального уравнения, он же – порядок цепи, коэффициентыa k > 0 и определяются параметрами пассивных элементовR ,L ,C цепи, а правая часть является функцией задающих воздействий.

В соответствии с классической теорией дифференциальных уравнений полное решение неоднородного дифференциального уравнения находится в виде суммы частного решения неоднородного дифференциального уравнения и общего решения однородного дифференциального уравнения:

Ч

астное решение полностью определяется видом правой частиf (t ) дифференциального уравнения. В электротехнических задачах правая часть зависит от воздействующих источников электрической энергии, поэтому вид

обуславливается (принуждается) источниками электрической энергии и называетсяпринужденной составляющей.

Общее решение однородного дифференциального уравнения зависит от корней характеристического уравнения, которые определяются коэффициентами дифференциального уравнения, и не зависит от правой части. Таким образом, любая искомая величина в переходном режиме


.

16.Активное реактивное и полное сопротивления. Треугольник сопротивлений


.

Из этого следует, что модуль комплексного сопротивления:


. (3.44)

Следовательно,zможно представить как гипотенузу прямоугольного треугольника (рис. 3.13) – треугольника сопротивлений, один катет которого равен R, другой - х.

При этом


, (3.45)


. (3.46)

Зная

или

, можно определить угол.

Знак угла в выражениях для мгновенного значения токаопределяется характером нагрузки: при индуктивном характере нагрузки (

) ток отстаёт от напряжения на уголи в выражении для мгновенного значения тока уголзаписывают со знаком минус, то есть; при емкостном характере нагрузки (

) ток опережает напряжение на уголи выражение мгновенного значения тока записывают со знаком плюс, то есть.

17. Резонанс напряжений. Коэфф. Мощности. Треугольник мощностей.

Соответствует случаю, когда

(рис. 3.16). При этом

(см. подробнее раздел 3.10).

Из формулы 3.41 можно сделать вывод, что мощности P, Q, S связаны следующей зависимостью:


. (3.47)

Графически эту связь можно представить в виде прямоугольного треугольника (рис. 3.17) – треугольника мощности, у которого имеются катет, равный Р, катет равный Q и гипотенуза S.

Отношение Р к S, равное

, называетсякоэффициентом мощности .


. (3.48)

На практике всегда стремятся увеличить

, так как реактивная мощность, которая всегда существует в цепи R, L, C, не потребляется, а используется лишь активная. Из этого можно сделать вывод, что реактивная мощность является лишней и ненужной.

21.Параллельное соединение индуктивно связанных элементов цепи

Две катушки с сопротивлениями R 1 и R 2 , индуктивностями L 1 и L 2 и взаимной индуктивностью М соединены параллельно, причем одноимённые выводы присоединены к одному и тому же узлу (рис. 4.7).

При выбранных положительных направлениях токов и напряжения получаем следующие выражения:


; (4.11)


; (4.12)


; (4.13)

где

(4.14)

В этих уравнениях комплексные напряжения

и

взяты со знаком плюс, так как положительные направления этих напряжений (выбранные сверху вниз) и тех токов, от которых эти напряжения зависят, ориентированы относительно одноименных выводов одинаково. Решив уравнения, получим


; (4.15)


; (4.16)


. (4.17)

Откуда следует, что входное комплексное сопротивление рассматриваемой цепи


. (4.18)

Рассмотрим теперь включение, при котором одноименные выводы присоединены к разным узлам, т. е. L 1 и L 2 присоединены к узлу разноименными выводами. В этом случае положительные направления напряжений взаимной индукции (выбранные сверху вниз) и тех токов, от которых они зависят, ориентированы относительно одноименных выводов неодинаково и комплексные напряжения

и

войдут в уравнения (4.12) и (4.13) со знаком минус. Для токов

получатся выражения, аналогичные (4.15-4.17), с тем отличием, что Z М заменяется на- Z М и входное сопротивление цепи


. (4.19)

25.Определение четырёхполюсника. Основные формы записи уравнений четырёхполюсника

В ряде случаев необходимо рассматривать электрические цепи с двумя входными и двумя выходными зажимами, в которых ток и напряжение на входе связаны линейными зависимостями с напряжением и током на выходе.

Такие цепи называются четырёхполюсниками . Они могут иметь сколь угодно сложную структуру, так как в процессе исследования цепи важно определить не токи и напряжения в отдельных ветвях, а только зависимости между входными и выходными напряжениями и токами.

Иногда четырёхполюсниками называют электрические аппараты и устройства, имеющие пару входных и пару выходных зажимов. К ним, например, относятся однофазные трансформаторы, участки линии электропередачи, мостовые диодные выпрямители, сглаживающие фильтры и прочее.

Условное изображение четырехполюсника показано на рис. 7.1.

О

дну пару выводов называют входными (обозначаются

), другую - выходными (обозначаются

).

Если четырёхполюсник не содержит источников электрической энергии, то он называется пассивным , а если содержит –активным .

Примером активного четырёхполюсника может служить электронный усилитель.

На схеме активный четырёхполюсник изображается в виде прямоугольника с буквой А. Пассивный четырёхполюсник обозначается буквой П, либо вообще не обозначается.

Если у четырёхполюсника рабочими являются обе пары зажимов, то он называется проходным .

Четырёхполюсник, по сути, является передаточным звеном между источником питания и нагрузкой. К входным зажимам

, как правило, подключают источник питания, к выходным зажимам

- нагрузку.

Зависимости между двумя напряжениями и двумя токами на входных и выходных выводах можно записать в различной форме.

Возможны следующие шесть форм записи уравнений пассивного четырёхполюсника:

Форма А (основная):


, (7.1)


, (7.2)

где A,D – безразмерные коэффициенты;

С – [См]= [Ом -1 ]

27. Метод эквивалентного генератора

Впрактических расчётах часто нет необходимости знать режимы работы всех элементов сложной цепи, но ставится задача исследовать режимы работы одной определённой ветви.

При расчёте сложной электрической цепи приходится выполнять значительную вычислительную работу даже в том случае, когда требуется определить ток в одной ветви. Объём этой работы в несколько раз увеличивается, если необходимо установить изменение тока, напряжения, мощности при изменении сопротивления данной ветви, так как вычисления нужно производить несколько раз, задаваясь различными значениями сопротивления.

В любой электрической схеме можно мысленно выделить какую-то одну ветвь, а всю остальную часть схемы, независимо от структуры и сложности, условно изобразить прямоугольником, который представляет собой так называемый двухполюсник.

Таким образом, двухполюсник - это обобщённое название схемы, которая двумя выходными зажимами (полюсами) присоединена к выделенной ветви. Если в двухполюснике есть источник Э.Д.С. или тока, то такой двухполюсник называют активным. Если в двухполюснике нет источника Э.Д.С. или тока, то его называют пассивным.

При решении задачи методом эквивалентного генератора (активного двухполюсника) необходимо:

1. Мысленно заключить всю схему, содержащую Э.Д.С. и сопротивления, в прямоугольник, выделив из нее ветвьаb, в которой требуется найти ток (рис 2.13).

    Найти напряжение на зажимах разомкнутой ветви ab (в режиме холостого хода).

Напряжение холостого хода Uо (эквивалентное Э.Д.С. Еэ) для рассматриваемой цепи можно найти так:

.

Сопротивление R4 в расчёт не вошло, так как при разомкнутой ветви ab ток по нему не протекает.

3. Найти эквивалентное сопротивление. При этом источники Э.Д.С. закорачиваются, а ветви, содержащие источники тока, размыкаются. Двухполюсник становится пассивным.

Для данной схемы


.

4. Вычислить значение тока. Для данной схемы имеем:

.

В сложной электрической цепи постоянного тока (Таблица 2)

определить токи на всех участках цепи. Задачу решить двумя любыми методами

Таблица 2

Вариант № Данные для расчётов Схема электрической цепи
Е 1 =136В; Е 2 =80В; R 1 = 194 Ом; R 2 =76 Ом; R 3 = 240 Ом; R 4 =120 Ом. . r 1 = 6 Ом; r 2 = 4 Ом. Рис.12
Е 1 =150В; Е 2 =170В; R 1 = 29,5Ом;R 2 =24 Ом; R 3 = 40 Ом; r 1 = 0,5 Ом; r 2 = 1 Ом. Рис.13
Е 1 =68В; Е 2 =40В; R 1 = 97Ом;R 2 =38Ом; R 3 = 120 Ом; R 4 =60Ом; r 1 = 3 Ом; r 2 = 2 Ом. Рис.14
Е 1 =45В; Е 2 =60В; R 1 = 2 Ом;R 2 =14.5 Ом; R 3 = 15 Ом; R 4 =5 Ом 5 r 1 = 0,5 Ом; r 2 = 0,5Ом. Рис.15
Е 1 =30В; Е 2 =40В; R 1 =10Ом;R 2 =2 Ом; R 3 = 3Ом; R 4 = R 5 =12Ом; r 1 = 2Ом; r 2 = 1Ом. Рис.16
Вариант № Данные для расчётов Схема электрической цепи
Е 1 =90В; Е 2 =120В; R 1 = 4Ом;R 2 =29 Ом; R 3 = 30 Ом; R 4 =10Ом; r 1 = 1Ом; r 2 = 1Ом. Рис.17
Е 1 =120В; Е 2 =144В; R 1 = 3,6Ом;R 2 =6,4 Ом; R 3 = 6 Ом; R 4 =4 Ом r 1 = 0,4 Ом; r 2 = 1,6 Ом. Рис.18
Е 1 =160В; Е 2 =200В; R 1 = 9Ом;R 2 =19 Ом; R 3 = 25 Ом; R 4 =100Ом; r 1 = 1Ом;r 2 = 1 Ом. Рис.19
Е 1 =60В; Е 2 =72В; R 1 = 1,8Ом;R 2 =3,2 Ом; R 3 = 3 Ом; R 4 =2Ом; r 1 = 0,2Ом; r 2 = 0,8 Ом. Рис.20
Е 1 =80В; Е 2 =100В; R 1 = 9Ом;R 2 =19 Ом; R 3 = 25 Ом; R 4 =100Ом; r 1 = 1Ом; r 2 = 1 Ом. Рис. 21

Решение задачи 2 требует знаний методов расчёта сложной электрической цепи и ее участков, законов Кирхгофа, методики определения эквивалентно­го сопротивления цепи. Перед решением задачи изучите методики расчётов сложных электрических цепей постоянного тока и рассмотрите соответствующие им типовые при­меры.

Методические указания к решению задачи 2:

2.1. Метод наложения токов

Метод наложения является одним из методов расчета сложных цепей с несколькими источниками.

Сущность расчета цепей методом наложения сводится к следующему:

1. В каждой ветви рассматриваемой цепи направление тока выбирается произвольно.

2. Количество расчетных схем цепи равно количеству источников в исходной схеме.

3. В каждой расчетной схеме действует только один источник, а остальные источники заменяются их внутренним сопротивлением.

4. В каждой расчетной схеме методом свертывания определяют частичные токи в каждой ветви. Частичным называется условный ток, протекающий в ветви под действием только одного источника. Направление частичных токов в ветвях вполне определенно и зависит от полярности источника.

5. Искомые токи каждой ветви рассматриваемой схемы определяются как алгебраическая сумма частичных токов для этой ветви. При этом частичный ток, совпадающий по направлению с искомым, считается положительным, а несовпадающий - отрицательным. Если алгебраическая сумма имеет положительный знак, то направление искомого тока в ветви совпадает с произвольно выбранным, если отрицательный, то направление тока противоположно выбранному.

Пример 2.1. Метод наложения токов

Определить токи во всех ветвях цепи, схема которой приведена на рисунке 22, если задано Е 1 = 40 В; Е 2 = 30 В; R 01 = R 02 = 0,4 Ом; R 1 = 30 Ом; R 2 =R 3 = 10 Ом; R 4 =R 5 = 3,6 Ом.

Рисунок 22 Рисунок 23

Рисунок 24

Устанавливается, что количество ветвей и соответственно различных токов в цепи (рисунок 22) равно пяти, и произвольно выбирается направление этих токов.

Количество расчетных схем две, так как в цепи два источника.

Вычисляются частичные токи, созданные в ветвях первым источником (I’) Для этого изображается та же цепь, только вместо Е 2 - его внутреннее сопротивление (R 02). Направление частичных токов в ветвях указаны в схеме (рисунок 23).

Вычисление этих токов производится методом свертывания

Тогда первые частичные токи в цепи (рисунок 23), имеют следующие значения:

Вычисляются частичные токи, созданные вторым источником (I’’). Для этого изображается исходная цепь, заменив в ней первый источник (Е 1) его внутренним сопротивлением (R 01). Направления этих частичных токов в ветвях указаны на схеме (рисунок 24).

Вычислим эти токи, пользуясь методом свертывания.

Вторые частичные токи в цепи (рисунок 24) имеют следующие значения:

Следовательно, искомые токи в рассматриваемой цепи (рисунок 22) определяются алгебраической суммой частичных токов (см. рисунок 22, 23 и 24) и имеют следующие значения:

Ток I АБ имеет знак «-», следовательно, его направление противоположно произвольно выбранному, т.е. I АБ направлен из точки А в точку Б.

2.2. Метод узлового напряжения

Расчет сложных разветвленных электрических цепей с несколькими источниками можно осуществить методом узлового напряжения, если в этой цепи имеются только два узла. Напряжение между этими узлами и называется узловым. U АБ - узловое напряжение схемы (рисунок 25).

Величина узлового напряжения определяется отношением алгебраической суммы произведений ЭДС и проводимости ветвей с источниками к сумме проводимостей всех ветвей:

Для определения знаков алгебраической суммы направление токов во всех ветвях выбирают одинаковым, т. е. от одного узла к другому (рисунок 25). Тогда ЭДС источника, работающего в режиме генератора, берут со знаком «+», а источника, работающего в режиме потребителя, - со знаком «-».

Рисунок 25

Для цепи, изображенной на рисунке 25, узловое напряжение определяется выражением:

,

Где – проводимость первой ветви; - проводимость второй ветви; – проводимость третей ветви.

Узловое напряжение (U АБ) может получиться как положительным так и отрицательным. Определив узловое напряжение (U АБ), можно вычислить токи в каждой ветви.

Узловое напряжение для первой ветви:

Так как источник E 1 работает в режиме генератора. Откуда

Для второй ветви, источник которой E 2 работает в режим потребителя:

Для третьей ветви , так как условно выбранное направление тока I 3 указывает, что точки Б () больше, чем потенциал точки А (). Тогда:

,

Знак «-» в вычисленном значении тока указывает, что условно выбранное направление тока данной ветви противоположно выбранному.

Пример 2.2. Метод узлового напряжения

Рисунок 26

В ветвях схемы (рисунок 26) требуется определить токи, если R 1 = 1,7 Ом; R 01 = 0,3 Ом; R 2 = 0,9 Ом; R 02 = 0,1 Ом; R 3 =4 Ом; E 1 = 35 В; E 2 = 70 В.

Определяем узловое напряжение U АБ

Где ; ; ;

Определяем токи в ветвях:

Как видно, направление токов I 1 и I 3 противоположно выбранному. Следовательно, источник Е 1 работает в режиме потребителя.

2.3. Метод узловых и контурных уравнений

Законы Кирхгофа лежат в основе расчета сложных электрических цепей методом узловых и контурных уравнений.

Составление системы уравнений по законам Кирхгофа (методом узловых и контурных уравнений) осуществляется в следующем порядке:

1. Число уравнений равно числу токов в цепи (число токов равно числу ветвей в рассчитываемой цепи). Направление токов в ветвях выбирается произвольно.

2. По первому закону Кирхгофа составляется (n-1) уравнений, где n- число узловых точек в схеме.

3. Остальные уравнения составляются по второму закону Кирхгофа.

В результате решения системы уравнений определяем искомые величины для сложной электрической цепи (например, все токи при заданных значениях ЭДС источников Е и сопротивлений резисторов R). Если в результате расчета какие-либо токи получаются отрицательными, это указывает на то, что их направление противоположно выбранному.

Пример 2.3. Метод узловых и контурных уравнений

Рисунок 27

Составить необходимое и достаточное количество уравнений по законам Кирхгофа для определения всех токов в цепи (рисунок 27) методом узловых и контурных уравнений.

Решение. В рассматриваемой сложной цепи имеется 5 ветвей, а следовательно, и 5 различных токов, поэтому для расчета необходимо составить 5 уравнений, причем два уравнения по первому закону Кирхгофа (в цепи n=3 узловых точки А, Б и В) и три уравнения - по второму закону Кирхгофа (контур обходим по часовой стрелке и внутренним сопротивлением источников пренебрегаем, т.е. R 0 =0). Составляем уравнения:

1) (для точки А)

2) (для точки Б)

3) (для контура А, а, Б)

4) (для контура А, Б, б, В)

5) (для контура А, В, в)

Обходим контуры по часовой стрелке.

2.4. Метод контурных токов

При расчете сложных цепей методом узловых и контурных уравнений (по законам Кирхгофа) необходимо решать систему из большого количества уравнений, что значительно затрудняет вычисления. Так для схемы (рисунок 28) необходимо составить и рассчитать систему, составленную из 7-ми уравнений (по законам Кирхгофа).

Рисунок 28

Для этой цели в схеме выделим т независимых контура, в каждом из которых произвольно направим контурный ток (I I , I II , I III , I IV). Контурный ток - это расчетная величина, измерить которую невозможно. Как видно, отдельные ветви схемы входят в два смежных контура. Тогда действительный ток в такой ветви определяется алгебраической суммой контурных токов смежных контуров:

Для определения контурных токов составляем т уравнений по второму закону Кирхгофа. В каждое уравнение входит алгебраическая сумма ЭДС, включенных в данный контур (по одну сторону от знака равенства) и общее падение напряжения в данном контуре, созданное контурным током данного контура и контурными токами смежных контуров (по другую сторону знака равенства).

Таким образом, для схемы (рисунка 28) составляем 4 уравнения. Со знаком плюс записываются ЭДС и падения напряжения (по разные стороны знака равенства), действующие в направлении контурного тока, со знаком минус, направленные против контурного тока

Определив контурные токи, рассчитав систему уравнений, вычисляем действительные токи в рассматриваемой цепи.

Пример 2.4. Метод контурных токов

Рисунок 29

Определить токи на всех участках сложной цепи (рисунок 29), если Е 1 = 130 В; Е 2 =40 В; Е 3 =100 В; R 1 = 1 Ом; R 2 = 4,5 Ом; R 3 ==2 Ом; R 4 =4 Ом; R 5 = 10 Ом; R 6 = 5 Ом; R 02 =0,5 0м» R 01 = R 03 = О Ом.

2. Погрешности. Классификация погрешностей; причины их возникновения, способы обнаружения и пути устранения.

Вариант 3

1. Металлы и сплавы, применение в припоях. Маркировка припоев. Условия и факторы, влияющие на выбор марки припоя.

2. Устройство, типовые детали и узлы показывающих электроизмерительных приборов.

Вариант 4

1. Электрическая прочность диэлектриков. Способы и устройства для испытаний на электрическую прочность.

2. Принцип действия, устройство и область применения измерительных механизмов и приборов магнитоэлектрической, системы.

Вариант 5

1. Тепловые характеристики ЭТМ: температура плавления, вспышки и размягчение материалов, теплостойкость, морозостойкость, стойкость к термоударам, температурные коэффициенты.

2. Принцип действия, устройство и область применения измерительных механизмов и приборов электромагнитной, системы.

Вариант 6

1. Физико-химические характеристики: кислотное число, вязкость, влагостойкость, химическая стойкость, тропикостойкость, радиационная стойкость материалов.

2. Принципы действия, устройство, схемы включения и область применения измерительных механизмов и приборов электродинамической систем.

Вариант 7

1. Проводниковая медь. Получение меди. Физические, механические и электрические свойства меди. Мягкая медь. Твёрдая медь. Марки меди по ГОСТу. Применение меди.

2. Принципы действия, устройство, схемы включения и область применения измерительных механизмов и приборов ферродинамической системы.

Вариант 8

1. Определение контакта. Неподвижные, разрывные и скользящие контакты, их устройство. Требования, предъявляемые к контактным материалам.

2. Принципы действия, устройство, схемы включения и область применения измерительных механизмов и приборов индукционной системы.

Вариант 9

1. Сплавы высокого сопротивления: манганин, константан, нихром, фехраль. Их свойства, марки по ГОСТу и применение.

2. Магнитоэлектрические измерительные механизмы с преобразователями: термоэлектрические приборы, выпрямительные приборы, вибрационные и логометрические.

Вариант 10

1. Тугоплавкие материалы вольфрам и молибден, их свойства и применение.

2. Динамические характеристики ЭТМ: вибропрочность и ударная вязкость. Стандартные образцы, устройства и способы испытаний.

КОНТРОЛЬНАЯ РАБОТА №2

Электрические магнитные явления были известны еще в глубокой древности, но началом развития науки об этих явлениях (электротехника) принято считать 1600 год. В этом году английский физик У. Гильберт опубликовал результаты некоторых исследований электрических и магнитных явлений, ввел термин «электричество». Теорию атмосферного электричества (область статического электричества) в 1753 году опубликовал М.В. Ломоносов. В 1785 году Ш. Кулон установил закон взаимодействия электрических зарядов, в 1800 году А. Вольта изобрел гальванический элемент. Далее количество открытий новых законов, теорий, изобретений стало быстро возрастать. Всемирную известность получили такие ученые как В.В Петров, Х.Эрстед, А.Ампер, М. Фарадей, Э.Х. Ленц, Б.С. Якоби, Д. Максвелл, А.Г. Столетов, В.Н. Чикалев, П.Н. Яблочков, М.О. Доливо-Добровольский и многие другие. В настоящее время в области электротехники работают целые институты и научно-производственные объединения. Создана международная электротехническая комиссия, задачей которой является определение стандартов на получение, и использование электрической энергии в различных отраслях. Радиотехника и электроника и другие отрасли науки получили свое начало в науке «электротехника».

Определения понятия «Наука электротехника»:

Электротехника – это наука, которая занимается использованием свойств электромагнитного поля для получения, передачи и преобразования электрической энергии.

Электротехника как наука изучает свойства получения, передачи и преобразования электрической энергии.

Электротехника – это наука о процессах, связанных с практическим применением электрических и магнитных явлений

Электротехника как наука является областью знаний, в которой рассматриваются электрические и магнитные явления и их практическое использование

Электротехника как наука является базовой дисциплиной для изучения специальных дисциплин, таких как радиотехника, радиоцепи и сигналы, источники вторичного электропитания и другие.

Энергия – это количественная мера движения и взаимодействия всех форм материи .

Для любого вида энергии можно назвать материальный объект, который является ее носителем. Носителем электрической энергии является электромагнитное поле.

Электрическая энергия нашла широкое применение благодаря своим свойствам:

    универсальность, т.е легко преобразуется в другие неэлектрические виды энергии и обратно;

    передается на большие расстояния с небольшими потерями;

    легко дробится и распределяется по потребителям различной мощности

    легко регулируется и контролируется с помощью различных приборов.

Применяется электрическая энергия во всех без исключения отраслях промышленности и сельского хозяйства, в науке, в медицине, в отраслях услуг и сервиса, ну и конечно, в быту.

Радиотехника как наука решает задачи применения электромагнитного поля и электрической энергии для передачи информации без проводов.

ОСНОВНЫЕ ЗАКОНЫ ЭЛЕКТРОТЕХНИКИ

Тема1.1

Начальные сведения об электрическом поле, проводники, полупроводники,

В электрических цепях довольно часто встречается смешанное соединение , представляющее собой комбинацию последовательного и параллельного соединений. Если взять, например, три прибора, то возможны два варианта смешанного соединения. В одном случае соединяются два прибора параллельно, а к ним последовательно подключается третий (рис. 1, а).

Такая цепь имеет два последовательно включенных участка, один из которых представляет собой параллельное соединение. По другой схеме соединены последовательно два прибора, а параллельно к ним подключен третий (рис. 1, б). Эту цепь следует рассматривать как параллельное соединение, в котором одна ветвь сама является последовательным соединением.

При большем количестве приборов могут быть различные, более сложные схемы смешанного соединения. Иногда встречаются более сложные цепи, содержащие несколько источников ЭДС.

Рис. 1. Смешанное соединение резисторов

Для расчета сложных цепей существуют различные методы. Наиболее общим из них является применение . В самом общем виде этот закон гласит, что во всяком замкнутом контуре алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений.

Необходимо брать алгебраическую сумму потому, что ЭДС, действующие навстречу друг другу, или падения напряжения, созданные противоположно направленными токами, имеют разные знаки.

При расчете сложной цепи в большинстве случаев бывают известны сопротивления отдельных участков цепи и ЭДС, включенных источников. Чтобы найти токи, следует в соответствии со вторым законом Кирхгофа составить для замкнутых контуров уравнения, в которых токи являются неизвестными величинами. К этим уравнениям надо добавить уравнения для точек разветвления, составленные по первому закону Кирхгофа. Решая эту систему уравнений, определим токи. Конечно, для более сложных цепей этот метод получается довольно громоздким, так как приходится решать систему уравнений с большим числом неизвестных.

Применение второго закона Кирхгофа можно показать на следующих простейших примерах.

Пример 1. Дана электрическая цепь (рис. 2). ЭДС источников равны Е1= 10 В и Е2 = 4 В, а г1 = 2 Ом и r2 = 1 Ом соответственно. ЭДС источников действуют навстречу. Нагрузочное сопротивление R = 12 Ом. Найти ток I в цепи.

Рис. 2. Электрическая цепь с двумя источниками, включенными навстречу друг другу

Решение. Так как в данном случае имеется лишь один замкнутый контур, то составляем одно единственное уравнение: E 1 - E 2 = IR + Ir 1 + Ir 2 .

В левой его части имеем алгебраическую сумму ЭДС, а в правой части - сумму падений напряжений, создаваемых током I на всех последовательно включенных участках R, r1 и r 2.

Иначе уравнение можно написать в таком виде:

Е1 - Е2 = I (R = r1 + r2)

Или I = (Е1 - Е2) /(R + r1 + r2)

Подставив числовые значения, получим: I = (10 - 4) / (12 + 2 + 1 ) = 6/15 = 0,4 А.

Эту задачу, конечно, можно было решить на основании , имея в виду, что при включении двух источников ЭДС навстречу друг другу, действующая ЭДС равна разности E 1 - Е2, в общее сопротивление цепи является суммой сопротивлений всех включенных приборов.

Пример 2. Более сложная схема представлена на рис. 3.

Рис. 3. Параллельная работа источников, имеющих разные ЭДС

На первый взгляд она кажется довольно простой. Два источника (для примера взят генератор постоянного тока и аккумуляторная батарея) соединены параллельно и к ним подключена лампочка. ЭДС и внутренние сопротивления источников соответственно равны: Е1 = 12 В, Е2 = 9 В, r1 = 0,3 Ом, r2 = 1 Ом. Сопротивление лампочки R = 3 Ом Необходимо найти токи I1 , I2 , I и напряжение U на зажимах источников .

Поскольку ЭДС Е 1 больше, чем Е2, то в данном случае генератор Е1 , очевидно, заряжает аккумулятор и одновременно питает лампочку. Составим уравнения по второму закону Кирхгофа.

Для контура, состоящего из обоих источников, Е1 - E2 = I1rl = I2r2.

Уравнение для контура, состоящего из генератора Е1 и лампочки, имеет вид Е1 = I1rl + I2r2.

И, наконец, в контуре, в который входит аккумулятор и лампочка, токи направлены навстречу друг другу и поэтому для него Е2 = IR - I2r2. Эти три уравнения недостаточны для определения токов, так как только два из них являются независимыми, а третье может быть получено из двух других. Поэтому надо взять любые два из этих уравнений и в качестве третьего написать уравнение по первому закону Кирхгофа: I1 = I2 + I .

Подставив в уравнения числовые значения величин и решив их совместно, получим: I1 = 5 А, I 2 = 1,5 А, I = 3,5 A, U = 10,5 В.

Напряжение на зажимах генератора на 1,5 В меньше его ЭДС, так как ток, равный 5 А, создает потери напряжения, равные 1,5 В, на внутреннем сопротивлении г1 = 0,3 Ом. Зато напряжение на зажимах аккумуляторной батареи больше ее ЭДС на 1,5 В, потому что батарея заряжается током, равным 1,5 А. Этот ток создает на внутреннем сопротивлении батареи (г2 = 1 Ом) падение напряжения, равное 1,5 В, оно и прибавляется к ЭДС.

Не следует думать, что напряжение U всегда будет средним арифметическим E 1 и Е2, как это оказалось в данном частном случае. Можно только утверждать, что в любом случае U должно находиться между Е1 и Е2.

Анализ сложных электрических цепей постоянного тока.

Метод законов Кирхгофа

Сложной электрической цепью принято называть разветвленную цепь, содержащую несколько источников, расположенных в разных ветвях. Пример сложной цепи постоянного тока приведен на рис. 22.

Рис. 22. Пример сложной цепи постоянного тока

Истинные направления токов в ветвях сложной электрической цепи, как правило, неизвестны. Поэтому анализ сложной цепи начинается с выбора так называемых положительных направлений токов в ветвях схемы. На схеме положительные направления токов в ветвях обозначают стрелками с символами тока I . Пример выбора условных положительных направлений токов в ветвях схемы показан на рис. 22.

Если в результате анализа цепи получается, что ток в ветви положителен, то истинное направление тока будет совпадать с выбранным положительным направлением тока. Если в результате расчета окажется, что ток в ветви отрицателен, то истинное направление тока противоположно выбранному положительному направлению тока. Т.е. в ходе анализа электрической цепи токи в ветвях рассматриваются как алгебраические величины.

Наиболее общий подход к анализу сложных электрических цепей основан на использовании законов Кирхгофа. С помощью законов Кирхгофа составляется система линейных алгебраических уравнений относительно неизвестных токов. Число неизвестных токов равно числу ветвей схемы. Обозначим это число через m . Следовательно, с помощью законов Кирхгофа необходимо составить систему из m уравнений с m неизвестными токами.

При составлении уравнений по законам Кирхгофа необходимо придерживаться следующего правила. Если в схеме n узлов, то с помощью первого закона Кирхгофа составляется (n – 1) независимое уравнение. (Уравнение для последнего узла будет зависимым). Оставшиеся [m –(n –1)] уравнения составляются с помощью второго закона Кирхгофа для так называемых независимых контуров.

Независимый контур – это такой контур, при обходе которого появляется хотя бы одна новая ветвь по сравнению с ранее рассмотренными контурами.

В разветвленной цепи число независимых контуров всегда меньше общего количества контуров. Поэтому при выборе независимых контуров имеется определенная свобода выбора. Однако число независимых контуров в схеме всегда регламентировано. Схема рис. 22, например, содержит

[m – (n – 1)] = = 3

независимых контура.

В результате составления (n – 1) уравнения по первому закону Кирхгофа и [m – (n – 1)] уравнения по второму закону Кирхгофа образуется система из m уравнений относительно неизвестных токов ветвей. Решение этой системы позволяет определить токи ветвей.

Схема рис. 22 состоит из шести ветвей. Выбранные положительные направления токов в ветвях указаны на схеме стрелками с символами тока I 1 , I 2 , I 3 , I 4 , I 5 , I 6 . Для расчета токов в ветвях этой схемы с помощью законов Кирхгофа необходимо составить систему из шести уравнений.

Схема содержит четыре узла (n = 4). По первому закону Кирхгофа необходимо составить три уравнения. Условимся при составлении уравнений по первому закону Кирхгофа токи, выходящие из рассматриваемого узла, брать со знаком «плюс», а входящие в узел, – со знаком «минус».

В узел а входит ток I 1 , а выходят токи I 2 и I 3 . Тогда для узла a уравнение первого закона Кирхгофа будет иметь вид

Из узла b выходят токи I 1 , I 4 , I 6 . Уравнение первого закона Кирхгофа для узла b имеет вид

В узел c входят токи I 2 и I 4 , а выходит ток I 5 . Поэтому для узла c можно записать

Уравнения первого закона Кирхгофа, составленные для узлов а , b , c , включают в себя токи всех шести ветвей рассматриваемой схемы. Суммируя уравнения, составленные по первому закону Кирхгофа для узлов а , b , c , получаем следующее уравнение:

Это уравнение отличается от уравнения первого закона Кирхгофа для узла d только знаками, а именно:

То есть, уравнение первого закона Кирхгофа для узла d зависимое.

По второму закону Кирхгофа для рассматриваемой схемы необходимо составить три уравнения для трех независимых контуров. В качестве независимых контуров можно рассматривать, например, левый контур, составленный из первой, второй и четвертой ветвей, правый контур, составленный из второй, третьей и пятой ветвей, и нижний контур, составленный из четвертой, пятой и шестой ветвей.

При составлении уравнения второго закона Кирхгофа для каждого независимого контура необходимо придерживаться следующего правила. Если выбранное положительное направление тока в ветви совпадает с направлением обхода контура, то падение напряжения на соответствующем элементе R в левой части уравнения второго закона Кирхгофа берется со знаком «плюс». Если выбранное положительное направление тока в ветви противоположно направлению обхода контура, то падение напряжения на соответствующем элементе R в левой части уравнения второго закона Кирхгофа берется со знаком «минус». Если направление действия источника ЭДС, указанное на схеме стрелкой, совпадает с направлением обхода контура, то соответствующая ЭДС Е в правой части уравнения второго закона Кирхгофа берется со знаком «плюс». Если направление действия источника ЭДС, указанное на схеме стрелкой, противоположно направлению обхода контура, то соответствующая ЭДС Е в правой части уравнения второго закона Кирхгофа берется со знаком «минус».

Направления обхода независимых контуров на схеме рис. 22 выберем по часовой стрелке. Эти направления обхода указаны на схеме стрелками, замыкающимися вдоль каждого из независимых контуров.

Рассмотрим поочередно каждый из независимых контуров. В левом контуре токи I 1 и I 2 совпадают с направлением обхода контура. Падения напряжений R 1 I 1 , R 2 I 2 в левой части уравнения второго закона Кирхгофа для левого контура необходимо взять со знаком «плюс».Ток I 4 имеет направление, противоположное направлению обхода левого контура. Падение напряжения R 4 I 4 в левой части уравнения второго закона Кирхгофа для левого контура необходимо взять со знаком «минус». Направление действия источника ЭДС Е 1 совпадает с направлением обхода контура. В правой части уравнения второго закона Кирхгофа ЭДС Е 1 необходимо взять со знаком «плюс». Направления действия источников ЭДС Е 2 и Е 4 противоположны направлению обхода контура. В правой части уравнения второго закона Кирхгофа ЭДС Е 2 и Е 4 необходимо взять со знаком «минус». Таким образом, для левого независимого контура справедливо следующее уравнение второго закона Кирхгофа:

Аналогично для правого и нижнего независимых контуров схемы рис. 22 получаем следующие уравнения второго закона Кирхгофа:

При объединении уравнений, составленных по первому и второму законам Кирхгофа для схемы рис. 22, получается следующая система линейных алгебраических уравнений:

Решение этой системы позволяет найти токи I 1 , I 2 , I 3 , I 4 , I 5 , I 6 . По известным токам можно найти падения напряжений на элементах схемы, мощности и так далее.

Изложенный метод анализа сложных электрических цепей носит название метода законов Кирхгофа. Метод законов Кирхгофа – это наиболее общий подход к анализу электрических цепей.

Для анализа сложных электрических цепей могут использоваться и другие методы, например, метод контурных токов, метод узловых потенциалов, метод наложения, метод эквивалентного генератора. Эти методы строятся на основе законов Кирхгофа, закона Ома, принципа наложения. Поэтому они справедливы для линейных цепей. Исключение составляет метод эквивалентного генератора, который предполагает, что ветвь с искомым током может быть и нелинейной. Многообразие методов анализа сложных электрических цепей позволяет в каждом конкретном случае выбрать тот метод, который дает наиболее простой алгоритм расчета.

В частности, метод контурных токов и метод узловых потенциалов подобно методу законов Кирхгофа сводятся к решению систем линейных алгебраических уравнений. Однако количество искомых величин, а, следовательно, и порядок систем линейных алгебраических уравнений в этих методах меньше, чем в методе законов Кирхгофа.

Для решения систем линейных алгебраических уравнений используются известные математические методы. При малом количестве уравнений в системе можно использовать метод определителей (правило Крамера). При достаточно большом количестве уравнений в системе целесообразно использовать метод последовательного исключения неизвестных Гаусса с выбором главного элемента или итерационные методы решения систем линейных алгебраических уравнений, например, метод Зейделя.

Проверку правильности полученного решения можно выполнить путем подстановки найденных значений токов ветвей в систему уравнений, составленную по законам Кирхгофа, или путем составления баланса мощностей (смотри ниже).

Рассмотрим поочередно основные методы анализа электрических цепей. Но предварительно рассмотрим общий вопрос, касающийся геометрической структуры электрических цепей.