Главная · Бытовая техника · Углекислота является показателем загрязнения воздуха в помещении. Гигиеническое значение нормальных составных частей воздуха. Состояние чистого помещения

Углекислота является показателем загрязнения воздуха в помещении. Гигиеническое значение нормальных составных частей воздуха. Состояние чистого помещения

Нормативная основа предупреждения внутрибольничных инфекций

А. Е. Федотов,
д-р техн. наук, президент АСИНКОМ

Пребывание человека в больнице опасно для здоровья.

Причина - внутрибольничные инфекции, в том числе вызываемые микроорганизмами, приспособившими ся к традиционным мерам гигиены и устойчивые к антибиотикам*.

Красноречивые данные об этом приведены в статье Fabrice Dorchies в настоящем номере журнала (стр. 28) . Что делается у нас, не знает никто. Картина в наших больницах наверняка много хуже. Судя по уровню действующих отраслевых нормативных документов, наше здравоохранение еще не подошло к пониманию проблемы.

А проблема ясна. Она ставилась в журнале «Технология чистоты» №1/9 еще 10 лет назад. В 1998 г. АСИНКОМ были разработаны «Нормы на чистоту воздуха в больницах», основанные на зарубежном опыте. В том же году они были направлены в ЦНИИ эпидемиологии. В 2002 г. этот документ был представлен в Госсанэпиднадзор. Реакции не последовало в обоих случаях.

Зато в 2003 г. был утвержден СанПиН 2.1.3.137503 «Гигиенические требования к размещению, устройству, оборудованию и эксплуатации больниц, родильных домов и других лечебных стационаров» - отсталый документ, требования которого порой противоречат законам физики (см. ниже).

Основное возражение против введения западных стандартов - «нет денег». Это не правда. Деньги есть. Но идут они не туда, куда надо. Десятилетний опыт аттестации по мещений больниц силами Центра сертификации чистых помещений и Лаборатории испытаний чистых помещений показал, что фактическая стоимость операционных и палат интенсивной терапии превышает порой в несколько раз затраты на объекты, выполненные по Европейским нормам и оснащенные западным оборудованием. При этом объекты не соответствуют современному уровню.

Одна из причин - отсутствие должной нормативной базы.

Существующие стандарты и нормы

Техника чистых помещений в больницах запада применяется давно. Еще в 1961 г. в Великобритании профессор сэр Джон Чарнлей (John Charnley) оборудовал первую операционную «greenhouse» со скоростью нисходящего с потолка потока воздуха 0,3 м/с. Это явилось радикальным средством снижения риска инфицирования больных при трансплантации тазобедренных суставов. До этого у 9 % больных происходило инфицирование во время операции, и требовалась повторная трансплантация. Это была истинная трагедия для больных.

В 70-80-е годы технология чистоты на основе систем вентиляции и кондиционирования воздуха и применения высокоэффективных фильтров стала неотъемлемым элементом в больницах Европы и Америки. Тогда же в Германии, Франции и Швейцарии появились первые стандарты на чистоту воздуха в больницах.

В настоящее время выходит второе поколение стандартов, основанных на современном уровне знаний.

Швейцария

В 1987 г. Швейцарским институтом здравоохранения и лечебных учреждений (SKI - Schweizerisches Institut fur Gesundheits- und Krankenhauswesen) было принято «Руководство по строительству, эксплуатации и обслуживанию систем подготовки воздуха в больницах» - SKI, Band 35, «Richtlinien fur Bau, Betrieb und Uberwachung von raumlufttechnischen Anlagen in Spitalern».

Руководство различает три группы помещений:

В 2003 г. Швейцарским обществом инженеров по отоплению и кондиционированию было принято руководство SWKI 9963 «Системы отопления, вентиляции и кондиционирования воздуха в больницах (проектирование, строительство и эксплуатация)».

Его существенным отличием является отказ от нормирования чистоты воздуха по микробным загрязнениям (КОЕ) для оценки работы системы вентиляции и кондиционирования.

Критерием оценки является концентрация частиц в воздухе (не микроорганизмов). Руководство устанавливает четкие требования к подготовке воздуха для операционных и дает оригинальную методику оценки эффективности мер по обеспечению чистоты с помощью генератора аэрозолей.

Подробный анализ руководства дан в статье А. Бруннера в настоящем номере журнала.

Германия

В 1989 г. в Германии был принят стандарт DIN 1946, часть 4 «Техника чистых помещений. Системы обеспечения чистоты воздуха в больницах» - DIN 1946, Teil 4. Raumlufttechik. Raumlufttechishe Anlagen in Krankenhausern, Dezember, 1989 (пересмотрен в 1999 г.).

В настоящее время подготовлен проект стандарта DIN, содержащий показатели чистоты как по микроорганизмам (метод седиментации), так и по частицам.

Стандарт детально регламентирует требования к гигиене и методам обеспечения чистоты.

Установлены классы помещений Iа (высокоасептические операционные), Ib (другие операционные) и II. Для классов Iа и Ib даны требования к максимально допустимому загрязнению воздуха микроорганизмами (метод седиментации):

Установлены требования к фильтрам для различных ступеней очистки воздуха: F5 (F7) + F9 + H13.

Обществом немецких инженеров VDI подготовлен проект стандарта VDI 2167, часть: Оборудование зданий больниц - отопление, вентиляция и кондиционирование воздуха. Проект идентичен Швейцарскому руководству SWKI 9963 и содержит лишь редакционные правки, вы званные некоторыми различиями между «швейцарским» немецким и «немецким» немецким языками.

Франция

Стандарт на чистоту воздуха AFNOR NFX 906351, 1987 в больницах был принят во Франции в 1987 г. и пересмотрен в 2003 г.

Стандарт установил предельно допустимые концентрации частиц и микроорганизмов в воздухе. Концентрация частиц определяется по двум размерам: ≥0,5 мкм и ≥5,0 мкм.

Важным фактором является проверка чистоты только в оснащенном состоянии чистых помещений. Более подробно требования французского стандарта приведены в статье Fabrice Dorchies «Франция: стандарт на чистоту воздуха в больницах» этого номера журнала.

Перечисленные стандарты детализируют требования к операционным, устанавливают число ступеней фильтрации, типы фильтров, размеры ламинарных зон и т. д.

Проектирование чистых помещений больниц ведется на основе стандартов серии ИСО 14644 (ранее велось на основе Fed. Std. 209D).

Россия

В 2003 г. принят СанПиН 2.1.3.1375603 «Гигиенические требования к размещению, устройству, оборудованию и эксплуатации больниц, родильных домов и других лечебных стационаров».

Ряд требований этого документа вызывает недоумение. Например, приложение 7 устанавливает санитарно-микробиологические показатели для помещений разных классов чистоты (*оснащенное состояние):

В России классы чистоты чистых помещений были установлены ГОСТ Р 50766695, затем ГОСТ Р ИСО 14644616 2001. В 2002 г. последний стандарт стал стандартом СНГ ГОСТ ИСО 146446162002 «Чистые помещения и связанные с ними контролируемые среды, Часть 1. Классификация чистоты воздуха». Логично ожидать, что отраслевые документы должны соответствовать национальному стандарту, не говоря уже о том, что определения «условно чистые», «условно грязные» для классов чистоты, «грязный потолок» для потолков выглядят странно.

СанПиН 2.1.3.1375603 устанавливает для «особо чистых» помещений (операционные, асептические боксы для гематологических, ожоговых пациентов) показатель общего числа микроорганизмов в воздухе (КОЕ/м 3) до начала работы (оснащенное состояние) «не более 200».

А стандарт Франции NFX 906351 - не более 5. Эти больные должны находиться под однонаправленным (ламинарным) потоком воздуха. При наличии 200 КОЕ/м 3 , больной в состоянии иммунодефицита (асептический бокс гематологического отделения) неизбежно погибнет.

По данным ООО «Криоцентр» (А. Н. Громыко) микробная загрязненность воздуха в роддомах Москвы колеблется от 104 до 105 КОЕ/м 3 , причем последняя цифра относится к роддому, куда привозят бомжей.

Воздух московского метро содержит примерно 700 КОЕ/м 3 . Это лучше, чем в «условно чистых» помещениях больниц по СанПиНу.

В п. 6.20 вышеуказанного СанПиНа сказано: «В стерильные помещения воздух подается ламинарными или слабо турбулентными струями (скорость воздуха менее 0,15 м/с)» .

Это противоречит законам физики: при скорости менее 0,2 м/с поток воздуха не может быть ламинарным (однонаправленным), а при менее 0,15 м/с он становится не «слабо», а сильно турбулентным (неоднонаправленным).

Цифры СанПиНа - не безобидные, именно по ним ведется контроль объектов и экспертиза проектов органами санитарно-эпидемиологического надзора. Можно выпускать сколь угодно передовые стандарты, но пока существует СанПиН 2.1.3.1375603 дело с места не сдвинется.

Речь идет не просто об ошибках. Речь идет об общественной опасности таких документов.

В чем причина их появления?

  • Незнание европейских норм и основ физики?
  • Знание, но:
    • намеренное ухудшение условий в наших больницах?
    • лоббирование чьих-то интересов (например, производителей малоэффективных средств очистки воздуха)?

Как это увязать с защитой здоровья населения и правами потребителей?

Для нас, потребителей услуг здравоохранения, такая картина абсолютно неприемлема.

Тяжелыми и ранее неизлечимыми болезнями являлись лейкемия и другие заболевания крови.


Постель больного находится в зоне однонаправленного потока воздуха (класс 5 ИСО)

Сейчас решение есть, причем решение единственное: трансплантация костного мозга, затем подавление иммунитета организма на период адаптации (1-2 месяца). Чтобы человек, находясь в состоянии иммунодефицита, не погиб, его помещают в условия стерильного воздуха (под ламинарный поток).

В мире эта практика известна десятки лет. Пришла она и в Россию. В 2005 г. в Нижегородской областной детской клинической больнице были оборудованы две палаты интенсивной терапии для трансплантации костного мозга.

Палаты выполнены на уровне современной мировой практики. Это - единственное средство спасения обреченных детей.

А вот в ФГУЗ «Центр гигиены и эпидемиологии Нижегородской области» устроили безграмотную и амбициозную писчебумажную волокиту, задержав ввод объекта на полгода. Понимают ли эти служащие, что на их совести могут быть неспасенные детские жизни? Ответ нужно дать матерям, глядя им в глаза.

Разработка национального стандарта России

Анализ опыта зарубежных коллег позволил выделить несколько ключевых вопросов, некоторые из которых вызвали бурную дискуссию при обсуждении стандарта.

Группы помещений

Зарубежные стандарты в основном рассматривают операционные. Некоторые стандарты рассматривают изоляторы и другие помещения. Комплексная систематизация помещений всех назначений с ориентацией на классифика цию чистоты по ИСО отсутствует.

В принятом стандарте введены пять групп помещений в зависимости от риска инфицирования больного. Отдельно (группа 5) выделены изоляторы и гнойные операционные.

Классификация помещений выполнена с учетом факторов риска.

Критерий оценки чистоты воздуха

Что взять за основу оценки чистоты воздуха?:

  • частицы?
  • микроорганизмы?
  • то и другое?

Развитие норм в западных странах по этому критерию имеет свою логику.

На первых этапах чистота воздуха в больницах оценивалась только по концентрации микроорганизмов. Затем стал применяться и счет частиц. Еще в 1987 г. стандарт Франции NFX 906351 ввел контроль чистоты воздуха как по частицам, так и по микроорганизмам (см. выше) . Счет частиц с помощью лазерного счетчика частиц позволяет оперативно в режиме реального времени определять концентрацию частиц, в то время как для инкубации микроорганизмов на питательней среде требуется несколько дней.

Следующий вопрос: а что, собственно, проверяется при аттестации чистых помещений и систем вентиляции?

Проверяется качество их работы и правильность проект ных решений. Эти факторы однозначно оцениваются концентрацией частиц, от которой зависит число микроорганизмов.

Конечно, микробная обсемененность зависит от чистоты стен, оборудования, персонала и пр. Но эти факторы относятся к текущей работе, к эксплуатации, а не к оценке инженерных систем.

В связи с этим в Швейцарии (SWKI 9963) и Германии (VDI 2167) сделан логичный шаг вперед: установлен контроль воздуха только по частицам.

Учет микроорганизмов остается функцией эпидемиологической службы больницы и направлен на текущий контроль чистоты.

Эта мысль была заложена и в проект российского стандарта. На данном этапе от нее пришлось отказаться, ввиду категорически отрицательной позиции представителей санэпиднадзора.

Предельно допустимые нормы по частицам и микроорганизмам для различных групп помещений взяты по аналогам с западными стандартами и на основе собственного опыта.

Классификация по частицам соответствует ГОСТ ИСО 1464461.

Состояние чистого помещения

ГОСТ ИСО 1464461 различает три состояния чистых помещений.

В построенном состоянии проверяется выполнение ряда технических требований. Концентрация загрязнений как правило не нормируется.

В оснащенном состоянии помещение полностью укомплектовано оборудованием, но отсутствует персонал и не проводится технологический процесс (для больниц - отсутствует медперсонал и больной).

В эксплуатируемом состоянии в помещении выполняются все процессы, предусмотренные назначением помещения.

Правила производства лекарственных средств - GMP (ГОСТ Р 5224962004) предусматривают контроль загрязнений частицами как в оснащенном состоянии, так и в эксплуатируемом состоянии, а микрорганизмами - только в эксплуатируемом состоянии. В этом есть логика. Выделения загрязнений от оборудования и персонала при производстве лекарственных средств можно нормировать и обеспечивать соответствие нормам техническими и организационными мерами.

В лечебном учреждении есть ненормируемый элемент - больной. Его и медперсонал невозможно одеть в комбинезон для класса 5 ИСО и полностью закрыть всю поверхность тела. Из6за того, что источниками загрязнений в эксплуатируемом состоянии больничного помещения управлять нельзя, устанавливать нормы и проводить аттестацию помещений в эксплуатируемом состоянии бессмысленно, по крайней мере, по частицам.

Это понимали разработчики всех зарубежных стандартов. Нами также включен в ГОСТ контроль помещений только в оснащенном состоянии.

Размеры частиц

Изначально в чистых помещениях контролировалось загрязнение частицами с размерами, равными и большими 0,5 мкм (≥0,5 мкм). Затем, исходя из конкретных областей применения, стали появляться требования к концентрации частиц ≥0,1 мкм и ≥0,3 мкм (микроэлектроника), ≥0,5 мкм (производство лекарственных средств в дополнение к частицам ≥0,5 мкм) и пр.

Анализ показал, что в больницах нет смысла следовать шаблону «0,5 и 5,0 мкм», а достаточно ограничиваться контролем частиц ≥0,5 мкм.

Скорость однонаправленного потока


Рис. 1. Распределение модуля скорости

Выше уже отмечалось, что СанПиН 2.1.3.3175603, установив предельно допустимые значения скорости однонаправленного (ламинарного) потока 0,15 м/с, нарушил законы физики.

С другой стороны, вводить в медицине норму GMP 0,45 м/с ±20 % нельзя. Это приведет к дискомфорту, поверхостному обезвоживанию раны, может травмировать ее и пр. Поэтому для зон с однонаправленным потоком (операционные, палаты интенсивной терапии) установлена скорость от 0,24 до 0,3 м/с. Это грань допустимого, уходить от которой нельзя.

На рис. 1 показано распределение модуля скорости потока воздуха в зоне операционного стола для реальной операционной одной из больниц, полученное методом компьютерного моделирования.

Видно, что при малой скорости исходящего потока он быстро турбулируется и не выполняет полезной функции.

Размеры зоны с однонаправленным потоком воздуха

Из рис. 1 видно, что ламинарная зона с «глухой» плоскостью внутри бесполезна. А на рис. 2 и 3 показан принцип организации однонаправленного потока операционной Центрального института травматологии и ортопедии (ЦИТО). В этой операционной автор шесть лет назад оперировался по поводу полученной травмы. Известно, что однонаправленный поток воздуха сужается под углом примерно 15 % и то, что было в ЦИТО, смысла не имеет.

Правильная схема показана на рис. 4 (фирма «Klimed»).

Не случайно западные стандарты предусматривают размеры потолочного диффузора, создающего однонаправленный поток 3x3 м, без «глухих» поверхностей внутри. Исключения допускаются для менее ответственных операций.

Решения по вентиляции и кондиционированию

Эти решения соответствуют западным стандартам, экономичны и эффективны.

Сделаны некоторые изменения и упрощения без потери смысла. Например, в качестве финишных фильтров в операционных и палатах интенсивной терапии применены фильтры Н14 (вместо Н13), имеющие ту же стоимость, но значительно более эффективные.

Автономные устройства очистки воздуха

Автономные воздухоочистители являются эффективным средством обеспечения чистоты воздуха (кроме помещений групп 1 и 2). Они не требуют больших затрат, позволяют принимать гибкие решения и могут использоваться в массовом порядке, особенно в действующих больницах.

На рынке представлен широкий выбор воздухоочистителей. Не все они эффективны, некоторые из них вредны (выделяют озон). Основная опасность - неудачный вы6ор воздухоочистителя.

Лаборатория испытаний чистых помещений проводит экспериментальную оценку воздухоочистителей по показателям назначения. Опора на достоверные результаты - важное условие выполнения требований ГОСТ.

Методы испытаний

В руководстве SWKI 9963 и проекте стандарта VDI 2167 дана методика испытаний операционных с использованием манекенов и генераторов аэрозолей (). Применение этой методики в России вряд ли оправданно.

В условиях небольшой по территории страны одна специализированная лаборатория может обслужить все больницы. Для России это нереально.

С нашей точки зрения, и не нужно. С помощью манекенов отрабатываются типовые решения, которые закладываются в стандарт, а затем служат основой проектирования. Эти типовые решения отрабатываются в условиях института, что и сделано в г. Люцерн (Швейцария).

В массовой практике типовые решения применяются непосредственно. На готовом объекте проводятся испытания на соответствие стандартам и проекту.

ГОСТ Р 5253962006 дает систематизированную программу испытаний чистых помещений больниц по всем необходимым параметрам.

Болезнь легионеров - спутник старых инженерных систем

В 1976 г. в одном из отелей Филадельфии проходил конгресс Американского легиона. Из 4000 участников - 200 заболели, а 30 человек погибли. Причиной явился вид микроорганизмов, названный Legionella pneumophila в связи с упомянутым событием и насчитывающий более 40 разновидностей. Сама болезнь была названа болезнью легионеров.

Симптомы заболевания проявляются через 2-10 дней после инфицирования в виде головной боли, болей в конечностях и горле, сопровождаемых лихорадкой. Течение болезни сходно с обычной пневмонией, в связи с чем ее часто ошибочно диагностируют как пневмонию.

По официальной оценке в Германии с населением около 80 млн человек ежегодно страдают от болезни легионеров около 10 тыс. человек, но большинство случаев остаются нераскрытыми.

Инфекция передается воздушно6капельным путем. Возбудитель попадает в воздух помещения из старых систем вентиляции и кондиционирования, систем обеспечения горячей водой, душевых и пр. Legionella размножается особенно быстро в стоячей воде при температуре от 20 до 45 °С. При 50 °С происходит пастеризация, а при 70 °С - дезинфекция.

Опасными источниками являются старые большие здания (в т. ч. больницы и роддома), имеющие системы вентиляции и горячее водоснабжение.

Средства борьбы с болезнью - применение современных систем вентиляции с достаточно эффективными фильтрами и современных систем подготовки воды, включая циркуляцию воды, ультрафиолетовое облучение потока воды и пр.**

* Особую опасность представляют аспергиллы - широко распространенные плесневые грибы, обычно безвредные для людей. Но они представляют опасность для здоровья иммунодефицитных больных (например медикаментозная иммуносупрессия после трансплантации органов и тканей или больные с агранулоцитозом). Для таких больных ингаляция даже малых доз спор аспергилл может быть причиной тяжелых инфекционных заболеваний. На первом месте здесь находится легочная инфекция (пневмония). В больницах часто наблюдаются случаи инфицирования, связанные с проведением строительных работ или реконструкцией. Эти случаи вызваны выделением спор аспергилл из строительных материалов во время проведения строительных работ, что требует принятия специальных защитных мер (SWKI 99.3).

** Использованы материалы статьи M. Hartmann «Keep Legionella bugs at bay», Cleanroom Technology, March, 2006.

Климатическая техника давно перестала быть экзотикой, но все еще вызывает много вопросов. Какие именно приборы нужны (и нужны ли вообще) для комфортного микроклимата? И, кстати, что такое вообще микроклимат? Гид от эксперта по воздуху в студию 🙂

Что такое микроклимат

Существует межгосударственный стандарт ГОСТ 30494-2011, устанавливающий строительные требования к микроклимату общественных и жилых зданий. Этот ГОСТ определяет микроклимат помещения как «состояние внутренней среды помещения, оказывающее воздействие на человека». Внутренняя среда – это, по большей части, воздух внутри помещения. Недаром далее следует уточнение, что микроклимат помещения характеризуется в основном температурой, влажностью и подвижностью воздуха.

Микроклимат, в самом деле, оказывает прямое воздействие на человека. Если он хороший («оптимальный», как выражается строгий ГОСТ), то человек испытывает ощущение комфорта, а организм не тратит силы на адаптацию к внешним условиям. Например, хороший микроклимат исключает жару, при которой человеческому телу пришлось бы активизировать механизмы теплорегуляции.

Микроклимат жилых и общественных зданий складывается из многих параметров, но первоочередными будут:

  • Температура воздуха;
  • Влажность воздуха;
  • Свежесть воздуха.

Температура воздуха

Требования. Все тот же ГОСТ для микроклимата нормирует температуру воздуха в помещениях. В теплый период рекомендуется диапазон 22–25°С. В холодное время года чуть ниже: 20–23°С для жилых комнат, 24–26°С для ванной, 23–24°С для детских и около 20°С для всех остальных помещений. Подробнее мы писали об этом .
Кстати, кроме указанного ГОСТа, существует еще СанПиН 2.1.2.2645-10. Он устанавливает гигиенические требования к микроклимату помещений. Однако нормы температуры и влажности воздуха в этих документах полностью совпадают.

Измерения. Температура измеряется при помощи термометра или датчиков в специализированных устройствах, таких как базовая станция системы умного микроклимата .
Регуляция. Если температура ниже комфортной, то понадобится . А если батареи, наоборот, топят слишком сильно, то Вам пригодится , благодаря которому температуру в комнате можно существенно снизить. В летнее время охладить комнату можно кондиционером. Кстати, кондиционер с функцией обогрева заменит обогреватель зимой.

Влажность воздуха

Требования. Рекомендуемая для человека влажность – 40-60%. Превышение этой отметки – уже сырость, которая чревата порчей имущества и появлением . Влажность ниже указанной может негативно воздействовать на самочувствие: Вы можете почувствовать в горле, глазах. Кожа тоже может пересохнуть и загрубеть – в первую очередь, это касается кожи лица и рук.
Кстати, упомянутые ГОСТ и СанПиН для микроклимата помещений указывают другие цифры оптимальной влажности: 30-45% зимой и 30-60% летом. Однако далеко не каждый при таких показателях будет чувствовать себя комфортно. Между прочим, дети в более влажном воздухе, чем взрослые.
Измерения. Влажность можно измерить бытовым гигрометром, домашней метеостанцией или многофункциональным устройством MagicAir (которое заслуживает отдельного разговора – он будет ниже).
Регуляция. С низкой влажностью борются при помощи увлажнителя. Высокую влажность победить сложнее, но вполне реально. Понадобится устранить протечки, утеплить промерзающие конструкции и – пожалуй, самое главное – наладить (подробнее можно почитать ).

Требования. Воздух в квартире содержит загрязнения из различных источников. Во-первых, это частицы, поступающие в помещение снаружи – через открытые окна или систему вентиляции без очистки. Это может быть как пыль и пыльца, так и выхлопные газы и заводские выбросы. Во-вторых, это испарения от мебели, отделочных материалов, предметов. Нередко в воздухе квартир можно обнаружить формальдегид. В-третьих, это биологические загрязнения от людей – так называемые антропотоксины. Организм человека выделяет ацетон, аммиак, фенолы, амины, углекислый газ CO2.
Разумеется, приведенные категории загрязнителей отличаются по степени опасности. Скажем, концентрированные выбросы сероводорода с соседнего завода причинят больше вреда, чем любой из антропотоксинов. В любом случае, хороший микроклимат в квартире подразумевает минимальное содержание загрязнителей в воздухе.

Измерения. Глубокий анализ состава и чистоты воздуха в квартире невозможен без специального оборудования. Такой анализ может провести . Косвенным показателем чистоты воздуха служит концентрация СО2. Чем она выше, тем хуже вентиляция. А чем хуже вентиляция, тем больше загрязнений накапливается в воздухе квартиры.
Регуляция. Очищать воздух можно при помощи , например, компактного . Его фильтры задерживают как частицы пыли, пыльцу, микроорганизмы, газы и запахи. Бризер может также работать в качестве очистителя воздуха – фильтровать загрязнения, источники которых находятся не снаружи, а внутри квартиры. Или можно использовать бризер в паре с воздуха, который не просто удерживает инфекции и вирусы, но и уничтожает их, тем самым снижая риск заболеть.

Свежесть воздуха

Требования. На свежесть воздуха напрямую указывает содержание углекислого газа, которое измеряется в единицах ppm. Как и в случае с влажностью, требования ГОСТа и рекомендации физиологов касательно оптимальной концентрации СО2 значительно . ГОСТ «Параметры микроклимата» считает приемлемым уровнем 800 – 1 400 ppm, а врачи рекомендуют поддерживать около 800 ppm. На этой отметке большинство людей чувствуют себя комфортно. С ростом уровня CO2 появляется ощущение духоты, вялость, усталость, снижается концентрация и работоспособность.
Измерения. Уровень CO2 измеряется датчиками. Такой есть, например, в базовой станции MagicAir.
Регуляция. Свежесть воздуха зависит от качества работы вентиляции. Необходимо обеспечить постоянный приток свежего воздуха с улицы и вытяжку душного воздуха, наполненного углекислым газом и загрязнениями. Правильная вентиляция решает сразу несколько задач: обеспечивает Вас свежим воздухом, устраняет загрязнения из квартиры, помогает регулировать влажность.
В пункте выше мы уже сказали несколько слов о компактном вентиляционном устройстве – бризере. Так вот, его основная функция – обеспечить приток воздуха. Бризер подает воздух на 4-5 человек, при этом очищая и подогревая его при необходимости.
Для оттока воздуха служит вытяжка в кухне, ванной, санузле. Если хочется ее усилить, то стоит подобрать .

помещений:

2. углекислый газ

3. угарный газ

4. сернистый газ

5. Предельно допустимое содержание углекислого газа в воздухе

помещений составляет:

6. Воды, наиболее часто подвергающиеся бактериальному загрязнению:

1. грунтовые

2. поверхностные

3. межпластовые напорные

4. межпластовые не напорные

7. Зона санитарной охраны водоисточника:

1. территория, на которой запрещено строительство предприятий

2. территория около водоисточника

3. территория, на которой установлен специальный режим, направленный на охрану водоисточника от загрязнений

4. территория населенного пункта

8. Централизованное водоснабжение:

1. подвоз воды автотранспортом

2. подача воды по водопроводу

3. забор воды из колодца

4. забор воды непосредственно из родника

9. Общая жесткость воды обусловлена содержанием:

2. йода, фтора

3. кальция, магния

4. сульфатов, хлоридов

10. Повышенное содержание фтора в почве и воде может привести к:

1. флюорозу

2. кариесу

3. эндемическому зобу

4. метгемоглобинемии

11. Заболевание, причина которого связана с недостатком йода во внешней среде и в том числе в воде:

1. гигиантизм

2. эндемический зоб

3. флюороз

4. эндемический энцефалит

12. Недостаток, какого микроэлемента в воде вызывает кариес зубов:

13. Избыток химических соединений в воде, вызывающих расстройство

желудочно-кишечного тракта:

2. сульфатов

3. нитратов

4. хлоридов

14. Заболевание, к возможному возникновению которого предрасполагает

повышенная жесткость воды:

1. хронический колит

2. панкреатит

3. мочекаменная болезнь

4. хронический холецистит

15. Заболевание, передающееся через воду:

1. дифтерия

2. газовая гангрена

16. Из перечисленных заболеваний к эндемическим относят:

1. флюороз

3. дизентерия

17. Дезинфекция воды – это:

3. коагуляция воды

4. фильтрация воды

18. Предупреждение загрязнения почвы твердыми и жидкими отбросами достигается:

4. организации субботников один раз в год

Часть 2

Инструкция: Дополните ответ.

Питание, являющееся элементом комплексного лечения больных, называется _____________________.

Питание, компенсирующее неблагоприятное действие факторов внешней и производственной среды, называется _____________________.

24. Укажите основной источник белка в пище _____________________.

25. Укажите основной источник углеводов в пище _____________________.

26. Рахит может развиваться при недостатке в организме витамина _____________________.

27. Кровоточивость десен и низкая заживляемость ран связаны с дефицитом витамина_____________________.

Часть 3.

Инструкция: Решите задачу.

28. У пациента отмечаются признаки недостаточности витамина А. Перечислите эти признаки.

29. В производственных условиях рассматривался вопрос по внедрению мероприятий, наиболее эффективных с точки зрения снижения действия неблагоприятных факторов производственной среды на природу и человека. Укажите эти мероприятия.

30. В отношении медицинских работников технологические и технические мероприятия по снижения неблагоприятного действия на организм оказываются малоэффективными. Укажите, какие мероприятия применяются в отношении медицинских работников.

Вариант № 2

Часть 1

Инструкция: Выберите один правильный ответ.

1. Повышенное содержание фтора в почве и воде может привести к:

1. флюорозу

2. кариесу

3. эндемическому зобу

4. метгемоглобинемии

2. Заболевание, причина которого связана с недостатком йода во внешней среде и в том числе в воде:

1. гигиантизм

2. эндемический зоб

3. флюороз

4. эндемический энцефалит

3. Недостаток, какого микроэлемента в воде вызывает кариес зубов:

4. Избыток химических соединений в воде, вызывающих расстройство

желудочно-кишечного тракта:

2. сульфатов

3. нитратов

4. хлоридов

5. Заболевание, к возможному возникновению которого предрасполагает

повышенная жесткость воды:

1. хронический колит

2. панкреатит

3. мочекаменная болезнь

4. хронический холецистит

6. Заболевание, передающееся через воду:

1. дифтерия

2. газовая гангрена

7. Из перечисленных заболеваний к эндемическим относят:

1. флюороз

3. дизентерия

8. Дезинфекция воды – это:

1. уничтожение патогенных микроорганизмов и вирусов

2. освобождение воды от мути и взвеси

3. коагуляция воды

4. фильтрация воды

9. Предупреждение загрязнения почвы твердыми и жидкими отбросами достигается:

1. складированием мусора на определенной территории домовладения

2. сбором отбросов в ямах, вырытых на территориях домовладения

3. санитарной очисткой населенных мест

4. организации субботников один раз в год

10. Наука, изучающая влияние факторов окружающей среды на организм

человека, называется:

1. биология

2. гигиена

3. санитария

4. экология

11. Воздействие человеческой деятельности на природу:

1. абиотическое

2. биотическое

Воздушный куб.

При температуре воздуха в помещении 20 °С взрослый человек выделяет в среднем 21,6л углерода диоксида за 1 ч, находясь в состоянии относительного покоя. Необходимый объем вентиляционного воздуха для одного человека при этом будет составлять 36 м3/ч.

не дает возможности широко применять эти показатели для нормирования воздухообмена.

Величины рекомендованного объема вентиляции очень вариабельны, так как на порядок отличаются между собой. Гигиенистами установлена оптимальная цифра - 200 м3/ч, соответствующая строительным нормам и правилам, - не менее 20 м3/ч для общественных помещений, в которых человек находится

беспрерывно не дольше 3 ч.

Ионизация воздуха. Для обеспечения воздушного комфорта в закрытом помещении имеет значение также электрическое состояние воздушной среды.

Ионизация воздуха изменяется интенсивнее при увеличении количества людей в помещении и уменьшении его кубатуры. При этом снижается содержание легких аэроионов вследствие поглощения их в процессе дыхания, адсорбции поверхностями и пр., а также превращения части легких ионов в тяжелые количество которых резко возрастает в выдыхаемом воздухе и при поднятии в воздух пылевых частиц. С уменьшением количества легких ионов связывают потерю освежающей способности воздуха, снижение физиологической

и химической активности.

Ионизованность воздуха жилых помещений следует оценивать по таким критериям.

Оптимальными уровнями ионизованности воздуха предложено считать концентрации легких ионов обоих знаков в пределах 1000-3000 ионов/см3,


Освещение и инсоляция . Световой фактор, сопровождающий человека в течение жизни, обеспечивает на 80% информацией, имеет большое биологическое действие, играет первоочередную роль в регулировании самых важных жизненных функций организма.

Рациональным, с гигиенической точки зрения, является такое освещение, которое обеспечивает:

а) оптимальные величины освещенности на окружающих поверхностях;

б) равномерное освещение во времени и пространстве;

в) ограничение прямой блесткости;

г) ограничение отраженной блесткости;

д) ослабление резких и глубоких теней;

е) увеличение контраста между деталью и фоном, усиление яркости и цветового контраста;

ж) правильное различие цветов и оттенков;

з) оптимальную биологическую активность светового потока;

и) безопасность и надежность освещения.

Оптимальные условия для выполнения зрительных работ при низких значениях коэффициента отражения фона можно обеспечить только при освещенности 10 000-15 000 лк

а для общественных и жилых помещений максимальная освещенность - 500 лк.

Освещение помещений обеспечивают за счет естественного света (естественное), световой энергии искусственных источников (искусственное) и, наконец, комбинации естественных и искусственных источников (комбинированное освещение).

Естественное освещение помещений и территорий создается главным образом за счет прямого, рассеянного, а также отраженного от окружающих предметов солнечного света. Естественное освещение необходимо предусматривать во всех помещениях, предназначенных для длительного пребывания людей.

Уровни освещенности естественным светом оценивают при помощи относительного

показателя КЕО (коэффициент естественного освещения) - это отношение уровня естественной освещенности внутри помещения (на самой отдаленной от окна рабочей поверхности или на полу) к одновременно определенному уровню освещенности снаружи (под открытым небом), умноженное на 100. Он показывает, какой процент от наружной освещенности составляет освещенность внутри помещения. Потребность в нормировании относительной величины связана с тем, что естественное освещение зависит от многих факторов, прежде всего, от нару ной освещенности, которая постоянно изменяется и образует переменный ре им внутри помещений. Кроме того, естественное освещение зависит от светового климата местности

Комплекса показателей ресурсов природно-световой энергии и солнечности

климата. Совмещенное освещение - система, где недостаток естественного света компенсируется

искусственным, т. е. естественный и искусственный свет совместно нормируются.

Для жилых комнат в условиях теплых климатических районов световой коэффициент должен быть 1:8

Искусственное освещение. Преимуществом искусственного освещения является возможность обеспечить в любом помещении желательный уровень

освещенности. Существуют две системы искусственного освещения: а) общее освещение; б) комбинированное освещение, когда общее дополняют местным, концентрирующим свет непосредственно на рабочих местах.

Искусственное освещение должно соответствовать следующим санитарно гигиеническим требованиям: быть достаточно интенсивным, равномерным; обеспечивать правильное тенеобразование; не ослеплять и не искажать цвета; быть безопасным и надежным; по спектральному составу приближаться к дневному

освещению.

Инсоляция. Облучение прямым солнечным светом является крайне необходимым фактором, оказывающим оздоровительное действие на организм человека и бактерицидное на микрофлору окружающей среды.

Положительный эффект солнечного излучения о мечается как на открытых территориях, так и внутри помещений. Однако эта способность реализуется лишь при достаточной дозе прямых солнечных лучей, что определяется таким показателем, как продолжительность инсоляции.

Профилактика неблагоприятного воздействия физических химических факторов на организм при эксплуатации бытовой техники.

Все бытовые приборы, работающие от электрического тока, образуют вокруг себя электромагнитные поля. Электромагнитное излучение опасно тем, что человек не ощущает их действия и поэтому не может определить степень их опасности без специальных приборов. Человеческий организм очень чувствителен к электромагнитному излучению. Если в маленькой кухне расположить электроплиту, микроволновую печь, телевизор, стиральную машинку, холодильник, обогреватель, кондиционер, электрический чайник и кофеварку, то среда обитания человека может стать опасным для здоровья человека.

При длительном нахождении в таком помещении наблюдается нарушения работы сердца, мозга, эндокринной и иммунной системы. Особую опасность электромагнитные излучения представляют детям и беременным женщинам. Самый высокий уровень электромагнитного излучения зафиксирован в сотовом телефоне, микроволновой печи, компьютереи на верхней крышке телевизора.

Уменьшить влияние электромагнитных полей помогает постоянное проветривание помещения и прогулки на свежем воздухе. Старайтесь не ставить телевизор и компьютер в комнате, где вы спите. Если вы живете в однокомнатной квартире или коммунальной комнате, то не устанавливайте компьютер, телевизор и сотовый телефон на расстоянии менее 1,5 метра от кровати. На ночь не оставляйте технику в режиме, когда красный огонек панели остается гореть.

Опасность для здоровья представляют телевизоры старого поколения с электронно-лучевой трубкой, которая сама по себе представляет активный излучатель. В жидкокристаллических телевизорах принцип работы иной, внутри них находятся специальные осветительные элементы, которая меняет свою прозрачность. Вредное излучение и мерцание экрана у них отсутствует.

Смотреть телевизоры с жидкокристаллическим экраном можно практически с любого расстояния. Но злоупотреблять временем при просмотре телевизора нельзя, это приводит к переутомлению глаз и ухудшению зрения. Глаза устают очень быстро, если человек смотрит телевизор под углом, который неудобно для видения. Чтобы избежать ухудшения зрения, через каждый час просмотра телевизора надо дать отдых глазам хотя бы 5 минут.

Самым безопасным для зрения расстоянием просмотра телевизора является место, которое дает возможность смотреть телевизор на расстоянии равном величине диагонали телевизора умноженной на пять.

Гигиена сельских населенных мест. Особенности планировки, застройки и благоустройства современных сельских населенных мест, сельского жилища.
Урбанизация как мировой исторический процесс определила глубокие струк­турные преобразования не только городов, но и сельских районов. Это касает­ся в первую очередь жилищного строительства, технической оснащенности, распространения городского образа жизни. Новая деревня имеет благоустро­енное жилье, хозяйственные постройки, электростанции, школы, клубы, дет­ские ясли, больницы.

Естественно, что благоустройство села необходимо осуществлять в полном соответствии с основными требованиями гигиенической науки. Однако пла­нировка и застройка сельских населенных пунктов связаны с при­родными условиями, спецификой труда в сельском хозяйстве, работой на при­усадебных участках и др.

Наиболее целесообразен компактный тип планировки села с выраженным делением на жилые кварталы с несколькими параллельными и перпендику­лярными улицами. Линейное расположение зданий вдоль транспортной маги­страли, напропгив, нежелательно.

Планировка сельского населенного пункта должна предусматривать разде­ление его территории на две зоны - хозяйственно-производственную и жи­лую. Выделяется и общественный центр, где размещаются административные и культурные учреждения.

Правильная планировка населенных пунктов способствует защите населе­ния от шума, пыли, газов, связанных с передвижением механизированного транспорта, работой ремонтных мастерских, зерносушилок и др.

В производственной зоне, где располагаются животноводческие постройки, птицефермы и навозохранилища, образуются места выплода мух и др.Воз­можно заражение почвы яйцами гельминтов и возбудителями опасных для людей зоонозов.

Производственные объекты размешают с подветренной стороны по отно­шению к жилым кварталам и ниже по рельефу. Между ними располагаются озелененные незастроенные участки - санитарно-защитные зоны шириной от 150 до 300 м.

Значительные расстояния от жилого массива предусматриваются при раз­мещении животноводческих ферм и особенно водохранилищ. Жилая зона, включающая в себя усадьбы колхозников, общественные центры, культурнобытовые, детские, медицинские учреждения, должна располагаться на наибо­лее благоприятной территории. По внутренней планировке она существенно отличается от городского жилого района. Каждый сельский двор имеет при­усадебный участок площадью около 0,25 га. В результате плотность застройки составляет 5-6%, а заселенность - 20-25 человек на I га.

Первичным элементом жилой зоны является сельская усадьба, от плани­ровки и санитарного состояния которой в итоге зависят гигиеническое благо­получие всего населенного пункта и здоровье сельских жителей. Непремен­ным условием гигиенического благополучия сельского населенного пункта является правильная организация водоснабжения. В настоящее время почти во всех крупных поселках имеются водопроводные сооружения, в мелких пока существует децентрализованное водоснабжение. Там, где используются шахт­ные колодцы, особенно необходимо соблюдать санитарные требования («гли­няный замок» и т.д.).

Большую роль в улучшении условий жизни сельского населения играют благоустройство и инженерное оборудование сельского поселения, улучшение его водоснабжения, водоотведения и очистки от твердых отходов. Работы по мелиорации территории и вертикальной планировке сельского населенного пункта включают борьбу с затоплением и подтоплением территорий, снижение уровня грунтовых вод, регулирование водотоков, осушение пойменных мест и устройство открытого дренирования. Все эти мероприятия

улучшают санитарное состояние территории, зданий и сооружений. Вопрос об инженерном оборудовании сельских населенных пунктов следует решать комплексно для селитебной и производственной зон с учетом очередности строительства и соблюдением нормативов. При проектировании, а также реконструкции сельского населенного пункта решаются задачи снабжения населения водой. Она должна отвечать гигиеническим нормам, независимо от того, строится ли сельский водопровод или используется сооружение местного водоснабжения. В проекте планировки должны быть указаны источники водоснабжения, а также вариант размещения сооружений и прокладывания инженерных сетей. Выбор способов обработки воды, состав и расположение основных сооружений, а также очередность строительства этих объектов зависят от оценки санитарной ситуации в населенном пункте и принятой в проекте системы застройки селитебной зоны (этажность домов, размеры приусадебных участков, протяженность уличной сети и пр.). При решении вопроса канализации сельского населенного пункта следует в первую очередь предусмотреть возможность и технико-экономическую целесообразность объединения ее с системой города или поселка, а также промышленного предприятия, которые могут прилегать к населенному пункту. Рекомендации по канализованию сельских населенных пунктов содержат обычно две очереди в осуществлении этого вида благоустройства: на первой очереди строительства предусмотрено сооружение местных систем, на второй

Развитие централизованных систем канализации с соответствующими очистными сооружениями. Очистные сооружения малой канализации выбирают в зависимости от количества поступающих сточных вод. Канализационные выпуски из зданий к местным очистным сооружениям малой канализации необходимо

проектировать с учетом дальнейшего их использования в процессе функционирования централизованной системы канализации. Систему и способы очистки сточных вод выбирают в соответствии с местными

условиями: санитарной характеристикой водоема в местах возможного выпуска сточных вод, наличием земельных участков, характером почвы и т. д. Санитарная очистка сельских населенных мест должна отвечать тем же требованиям, что и в условиях города. Однако необходимо учитывать также особенности,

как более тесный, чем в городе, контакт населения с почвой; отсутствие необходимости вывозить отбросы из усадеб; использование пищевых отходов для откорма домашних животных и т. д. Все это заслуживает внимания, так как повышает опасность заражения зоонозами. Поэтому санитарное состояние

хозяйственного двора, способ складирования навоза, содержание дворовых уборных и пр. должны быть предметом санитарного просвещения населения. Современное село, построенное заново или реконструированное, имеет много новшеств, однако остаются неизменными приусадебная застройка, близость

к сельскохозяйственным угодьям, что значительно облегчает решение задач санитарной очистки.

Состав атмосферного воздуха: азот – 78.08%, кислород - 20.95%, диоксид углерода – 0.03-0.04, примеси газов (аргон, неон, гелий, радон, криптон, озон, водород, ксенон, закись азота, метан) в минимальных концентрациях. Последние являются показателями происходящих процессов у живых организмов.

Азот по количественному содержанию является наиболее существенной составной частью атмосферного воздуха. Он принадлежит к индифферентным газам и играет роль разбавителя кислорода. При избыточном давлении (4 атм) азот может оказывать наркотическое действие.

В природе идет непрерывный круговорот азота, в результате чего азот атмосферы под влиянием электрических разрядов превращается в окислы азота, которые, вымываясь из атмосферы осадками, обогащают почву солями азотистой и азотной кислот. Под влиянием бактерий почвы соли азотистой кислоты превращаются в соли азотной кислоты, которые, в свою очередь, усваиваются растениями и служат для синтеза белка. При разложении органических веществ азот восстанавливается и снова поступает в атмосферу, из которой вновь связывается биологическими объектами.

Азот воздуха усваивается сине-зелеными водорослями и некоторыми видами бактерий почвы (клубеньковыми и азотфиксирующими).

Кислород . Постоянное содержание кислорода поддерживается непрерывными процессами его обмена в природе. Кислород потребляется при дыхании человека и животных, он необходим для горения и окисления. Кислород поступает в атмосферу в результате фотосинтеза растений. Наземные растения и фитопланктон ежегодно поставляют в атмосферу около 1,5?1015 т кислорода, что примерно соответствует его потреблению. В последние годы установлено, что под действием солнечных лучей молекулы воды распадаются с образованием молекул кислорода. Это второй источник образования кислорода в природе.

Организм человека очень чувствителен к недостатку кислорода. Уменьшение его содержания в воздухе до 17 % приводит к учащению пульса, дыхания. При концентрации кислорода 11-13 % отмечается выраженная кислородная недостаточность, приводящая к резкому снижению работоспособности. Содержание в воздухе 7-8 % кислорода несовместимо с жизнью.

Углекислый газ в природе находится в свободном и связанном состоянии. Диоксид углерода в 1,5 раза тяжелее воздуха. В окружающей среде происходят непрерывные процессы выделения и поглощения диоксида углерода. В атмосферу он выделяется в результате дыхания человека и животных, а также горения, гниения, брожения.



Диоксид углерода является физиологическим возбудителем дыхательного центра. Его парциальное давление в крови обеспечивается регулированием кислотно-щелочного равновесия. В организме он находится в связанном состоянии в виде двууглекислых солей натрия в плазме и эритроцитах крови. При вдыхании больших концентраций диоксида углерода нарушаются окислительно-восстановительные процессы. Чем больше диоксида углерода во вдыхаемом воздухе, тем меньше его может выделить организм. Накопление диоксида углерода в крови и тканях ведет к развитию тканевой аноксии. Увеличение содержания диоксида углерода во вдыхаемом воздухе до 3 % приводит к нарушениям функции дыхания (одышка), появлению головной боли и снижению работоспособности, при 4 % отмечают усиление головной боли, шум в ушах, сердцебиение, возбужденное состояние, при 8 % и более возникает тяжелое отравление и наступает смерть. По содержанию диоксида углерода судят о чистоте воздуха в жилых и общественных зданиях, значительное накопление этого соединения в воздухе закрытых помещений указывает на санитарное неблагополучие помещения (скученность людей, плохая вентиляция).

Считают, что ощущение дискомфорта обычно связано не только с увеличением содержания диоксида углерода свыше 0,1 %, но и с изменением физических свойств воздуха при скоплении людей в помещениях: повышаются влажность и температура, изменяется ионный состав воздуха главным образом за счет увеличения положительных ионов и др.

Из всех показателей, связанных с ухудшением свойств воздуха, диоксид углерода наиболее доступен простому определению. Поэтому концентрация (0,1 %) издавна принята в гигиенической практике как предельно допустимая величина, интегрально отражающая химический состав и физические свойства воздуха в жилых и общественных помещениях. Таким образом, диоксид углерода является косвенным гигиеническим показателем, по которому оценивают степень чистоты воздуха. По содержанию диоксида углерода производится расчет вентиляции в жилых и общественных зданиях.



ИЗА - комплексный индекс загрязнения атмосферы, учитывающий несколько примесей, представляющий собой сумму концентраций выбранных загрязняющих веществ в долях ПДК (в соответствии с РД 52.04.186-89 Руководство по контролю загрязнения атмосферы).

В зависимости от значения ИЗА уровень загрязнения воздуха определяется следующим образом:

Уровень загрязнения атмосферного воздуха Значения ИЗА

Низкий меньше или равен 5

Повышенный 5-7

Высокий 7-14

Очень высокий больше или равен 14

7. Показатели загрязнения воздуха помещений. Углекислота как показатель загрязнения воздуха в больничных помещениях. Нормирование и методы определения.

Воздух застаивается в помещении, где постоянно возрастает концентрация вредных для здоровья веществ из-за использования различных строительных и отделочных материалов, конструкционных и обивочных материалов мебели, полимеров, бытовой химии, пластмасс, а также множества различных электронных устройств. Но не стоит забывать, что из этого следуют заболевания разной степени тяжести, такие как астма, аллергия, постоянные головные боли, стресс, быстрая утомляемость, нарушения мозговой деятельности, может развиться также и онкологическая патология.

основным косвенным показателем загрязненности воздух жилых помещений служит углекислый газ (точнее его концентрация в воздухе).

При нахождении в помещении людей концентрация углекислого газа по степенно увеличивается, так как выдыхаемый воздух содержит повышенное его количество.

Концентрация углекислого газа выражается в процентах (%) и промилях (Л°). 1 промиля (1 Л») - это количество мл газа в 1 л воздуха.

Как известно, концентрация углекислого газа в атмосферном воздухе составляет приблизительно 0.04 %

ПДК (предельно допустимая концентрация) углекислого газа в воздухе жилых помещений равна:

0.7 % - для "чистых" помещений (больничных) - операционных, палат, перевязочных и тд.

0.1 % -для обычных жилых помещений.

Нормирование содержания углекислого газа в воздухе связано с тем, что при увеличении его концентрации он оказывает неблагоприятное действие на человека. Так, при возрастании концентрации углекислого газа во вдыхаемом воздухе до 2 % и более он оказывает токсическое действие, при концентрации - 3-4 % - сильное токсическое действие, а концентрация 7-8 % является летальной.

При пребывании в помещении людей количество углекислого газа увеличивается. Один человек выделяет приблизительно 22.6 л углекислого газа в час.

Каждый литр подаваемого в помещение воздуха содержит 0.4 %° углекислого газа, то есть каждый литр этого воздуха содержит 0.4 мл углекислого газа и таким образом может еще "принять" 0.3 мл (0.7 - 0.4) для чистых помещений (до 0.7 мл в литре или 0.7 /~) и 0.6 мл (1 - 0.4) для обычных помещений (до 1 мл в литре или 1 /~).

Так как каждый час 1 человек выделяет 22.6 л (22600 мл) углекислого газа, а каждый литр подаваемого воздуха может "принять" указанное выше число мл углекислого газа, то количество литров воздуха, которое необходимо подать в помещение на 1 человека в час составляет (палаты, операционные) - 22600 / 0.3 = 75000 л = 75 м3 . То есть, 75 м3 воздуха на каждого человека в час должно поступить в помещение для того чтобы концентрация углекислого газа в нем не превысила 0.7%