У дома · уреди · Compressed Air Energy Storage (CAES) - Пневматично съхранение на енергия. Как работи пневматичният акумулатор на енергия Енергиен капацитет на химическите акумулатори

Compressed Air Energy Storage (CAES) - Пневматично съхранение на енергия. Как работи пневматичният акумулатор на енергия Енергиен капацитет на химическите акумулатори

Резервоар с въздух или друг газ, свързан към канал и оборудван с предпазен клапан, регулиран на определено налягане. Пневматичният акумулатор е необходим елемент от машини за издухване и изхвърляне на пясък за производството на... ... Металургичен речник

пневматичен акумулатор- pneumatinis akumuliatorius statusas T sritis Energetika apibrėžtis Suslėgtų dujų arba oro energijas kaupiklis. атитикменис: англ. пневматичен акумулатор вок. Druckluftspeicher, м рус. пневматичен акумулатор, m; пневматичен акумулатор, m pranc.… … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

ПНЕВМАТИЧЕН АКУМУЛАТОР- резервоар с въздух (или друг газ), свързан към въздуховода и оборудван с предпазно устройство. вентил, който се регулира на дадено максимално налягане. Използва се в сложни пневматични приложения. мрежи за изравняване на работното налягане, на ветроелектрически... ... Голям енциклопедичен политехнически речник

Батерия (пояснение)- Батерия (лат. аккумулятор колектор, от лат. accumulo събирам, натрупвам) устройство за съхраняване на енергия с цел последващото й използване. Автомобилната батерия е акумулаторна батерия, използвана в автомобил... ... Wikipedia

Батерия- Този термин има други значения, вижте Батерия (значения). Батерия (лат. аккумулятор колектор, от лат. accumulo събирам, натрупвам) устройство за съхраняване на енергия с цел последващото й използване, ... ... Wikipedia

БАТЕРИЯ- (от латински акумулатор колектор) устройство за съхраняване на енергия с цел последващото й използване. 1) Електрическа батерия преобразува електрическата енергия в химическа енергия и, ако е необходимо, осигурява обратното преобразуване;... ... Голям енциклопедичен речник

БАТЕРИЯ Съвременна енциклопедия

Батерия- (от латински акумулатор колектор), устройство за съхраняване на енергия с цел последващото й използване. 1) Електрическа батерия галванична клетказа многократна употреба; преобразува електрическата енергия в химическа енергия и... Илюстрован енциклопедичен речник

батерия- А; м. Устройство за съхраняване на енергия с цел последващото й използване. Термични, електрически a. Такса а. ◁ Акумулаторна, о, о. А. резервоар. И батерията. * * * батерия (от латински акумулатор колектор), устройство за съхранение на... ... енциклопедичен речник

Батерия- (лат. акумулатор колектор, от accumulo събирам, натрупвам) устройство за съхраняване на енергия с цел последващото й използване. В зависимост от вида на акумулираната енергия А. се разграничават: електрически, хидравлични, термични,... ... Велика съветска енциклопедия

Наскоро си припомнихме проблемите с изглаждането на пиковете в производството/потреблението на електроенергия, когато обсъждахме. В същото време си спомнихме възможността за съхраняване на топлина за по-късна употреба, както в или. И днес ще разгледаме проекти за пневматични батерии.

Най-простата такава батерия е обикновена. газова бутилка, в който в момента на пиково производство на електроенергия компресорът изпомпва въздух под високо налягане. Когато производството на енергия спадне или, обратно, нейното потребление рязко се увеличи, клапанът се отваря и изтичащият сгъстен въздух завърта турбината на генератора. Ефективността на такава инсталация се оказва сравнително малка, но предвид факта, че често при пиково производство енергията просто се губи, затопляйки околното пространство, дори това допълнение не трябва да се пренебрегва.

Как можете да увеличите ефективността и да намалите относителната цена на такава система? В настройка, наречена Въздух под наляганеСъхранение на енергия (CAES), построено за първи път от САЩ през 1991 г. в Макинтош, Алабама. За резервоар се използва естествена подземна солна пещера. Слоят сол не пропуска въздуха, дори под високо налягане- малки зърна, солен прах запечатва най-малките пукнатини, които могат да се появят в дебелината на образуванието. Въздух в пещерата с обем 538 хиляди кубически метра. изпомпва се от компресор до налягане от 77 атмосфери. Когато консумацията на енергия в мрежата се увеличи неочаквано, въздухът излиза и освобождава енергия в системата. Времето за изпразване на резервоара до по-ниско работно налягане от 46 atm е 26 часа, през които станцията произвежда 110 MW мощност.

Как да увеличим ефективността на системата? Сгъстеният въздух не върти работното колело сам, а се смесва с природен газ и се подава към газовата турбина. Повечето отМощността на газовата турбина (до две трети) обикновено се изразходва за задвижване на компресора, който изпомпва въздух в нея - това е мястото, където получаваме значителни спестявания. Освен това, преди да влезе в турбината, въздухът се нагрява в топлообменника (рекуператора) с продукти от горенето, което също добавя ефективност.


Като цяло, като равна на традиционната газова турбина, тази схема осигурява намаляване на потреблението на газ с 60...70%, бърз старт от студено състояние (няколко минути) и Добра работапри ниски натоварвания. Строителството на станцията Mcntosh отне 30 месеца и струва 65 милиона долара (дори въпреки наличието на естествена солна пещера).

В допълнение към проекта в Алабама, през 1978 г. в Хунторф германците пуснаха хранилище с мощност 290 MW (2 часа работа) в две солни пещери на дълбочина 600...800 m с диапазон на налягането 50... 70 атмосфери. Съоръжението за съхранение първоначално е служило като горещ резерв за промишлеността в северозападна Германия и сега се използва за изглаждане на пикове в производството на вятърни паркове.

В съветско време беше планирано изграждането на пневматична батерия от 1050 MW в Донбас, но уви, както много проекти от онези години, всичко остана на хартия.

Е, видео от разработчиците на проекта.

Екология на знанието Наука и технологии: В контекста на активното развитие на новите технологии в енергетиката, устройствата за съхранение на електроенергия са добре позната тенденция. Това е висококачествено решение на проблема с прекъсване на електрозахранването или пълна липса на енергия.

Има въпрос: „Кой метод за съхранение на енергия е за предпочитане в дадена ситуация?“. Например, какъв метод за съхранение на енергия трябва да избера за частна къща или вила, оборудвана със слънчева или вятърна инсталация? Очевидно в този случай никой няма да изгради голяма помпено-акумулираща станция, но е възможно да се инсталира голям резервоар, като се издигне на височина от 10 метра. Но дали такава инсталация ще бъде достатъчна, за да поддържа постоянно захранване при липса на слънце?

За да отговорим на възникващите въпроси, е необходимо да разработим някои критерии за оценка на батериите, които ще ни позволят да получим обективни оценки. И за да направите това, трябва да вземете предвид различни параметри на задвижването, които ви позволяват да получите числени оценки.

Капацитет или натрупан заряд?

Когато се говори или пише за автомобилни батерии, те често споменават стойност, наречена капацитет на батерията и изразена в ампер-часове (за малки батерии - в милиампер-часове). Но, строго погледнато, амперчасът не е единица за капацитет. В електрическата теория капацитетът се измерва във фаради. А амперчасът е мерна единица за заряд! Тоест натрупаният заряд трябва да се разглежда (и нарича така) като характеристика на батерията.

Във физиката зарядът се измерва в кулони. Кулон е количеството заряд, преминал през проводник при ток от 1 ампер за една секунда. Тъй като 1 C/s е равен на 1 A, тогава, като преобразуваме часовете в секунди, намираме, че един ампер-час ще бъде равен на 3600 C.

Трябва да се отбележи, че дори от дефиницията на кулон става ясно, че зарядът характеризира определен процес, а именно процеса на преминаване на ток през проводник. Същото нещо следва дори от името на друга величина: един ампер-час е когато ток от един ампер протича през проводник за един час.

На пръв поглед може да изглежда, че тук има някакво несъответствие. В крайна сметка, ако говорим за пестене на енергия, тогава енергията, натрупана във всяка батерия, трябва да се измерва в джаули, тъй като джаулът във физиката е единицата за измерване на енергия. Но нека си припомним, че токът в проводник възниква само когато има потенциална разлика в краищата на проводника, тоест към проводника се прилага напрежение. Ако напрежението на клемите на батерията е 1 волт и през проводника протича заряд от един ампер-час, ние откриваме, че батерията е доставила 1 V · 1 Ah = 1 Wh енергия.

Така че по отношение на батериите е по-правилно да се говори за акумулирана енергия (съхранена енергия) или натрупан (съхранен) заряд. Въпреки това, тъй като терминът „капацитет на батерията“ е широко разпространен и някак по-познат, ние ще го използваме, но с известно уточнение, а именно ще говорим за енергиен капацитет.

Енергиен капацитет - енергията, която отделя напълно заредена батерия, когато се разреди до най-ниската допустима стойност.

Използвайки тази концепция, ще се опитаме приблизително да изчислим и сравним енергийния капацитет различни видовеустройства за съхранение на енергия.

Енергиен капацитет на химически батерии

Напълно зареден електрическа батерияс деклариран капацитет (заряд) от 1 Ah, теоретично е в състояние да осигури ток от 1 ампер за един час (или например 10 A за 0,1 час, или 0,1 A за 10 часа). Но твърде големият ток на разреждане на батерията води до по-малко ефективно захранване, което нелинейно намалява времето, през което тя работи с такъв ток и може да доведе до прегряване. На практика капацитетът на батерията се изчислява въз основа на 20-часов цикъл на разреждане до крайното напрежение. За автомобилните батерии това е 10,8 V. Например, надписът на етикета на батерията „55 Ah“ означава, че тя е в състояние да достави ток от 2,75 ампера за 20 часа, а напрежението на клемите няма да падне под 10,8 IN .

Производителите на батерии често посочват технически спецификациина техните продукти, съхранената енергия в Wh (Wh), а не съхраненият заряд в mAh (mAh), което най-общо казано не е правилно. Изчисляването на съхранената енергия от съхранения заряд не е лесно в общия случай: необходимо е интегриране моментна мощност, издаден от акумулатора за цялото време на разреждането му. Ако не е необходима по-голяма точност, вместо интегриране можете да използвате средните стойности на напрежението и консумацията на ток и да използвате формулата:

1 Wh = 1 V 1 Ah.

Тоест съхранената енергия (в Wh) е приблизително равна на произведението на съхранения заряд (в Ah) и средното напрежение (във волтове): д = р · U. Например, ако капацитетът (в обичайния смисъл) на 12-волтова батерия е посочен като 60 Ah, тогава съхранената енергия, тоест нейният енергиен капацитет, ще бъде 720 W часа.

Енергиен капацитет на гравитационни устройства за съхранение на енергия

Във всеки учебник по физика можете да прочетете, че работата A, извършена от някаква сила F при повдигане на тяло с маса m на височина h, се изчислява по формулата A = m · g · h, където g е ускорението на гравитацията. Тази формула се прилага в случай, че тялото се движи бавно и силите на триене могат да бъдат пренебрегнати. Работата срещу гравитацията не зависи от това как повдигаме тялото: вертикално (като тежест на часовник), по наклонена равнина (като при теглене на шейна нагоре по планина) или по друг начин.

Във всички случаи работата A = m · g · h. При спускане на тялото до първоначалното му ниво, силата на гравитацията ще произведе същата работа, която е изразходвана от силата F за повдигане на тялото. Това означава, че при повдигане на тяло сме натрупали работа, равна на m · g · h, т.е. повдигнатото тяло има енергия, равна на произведението на силата на гравитацията, действаща върху това тяло, и височината, на която е повдигнато. Тази енергия не зависи от пътя, по който е станало издигането, а се определя само от положението на тялото (височината, на която е повдигнато или разликата във височините между началното и крайното положение на тялото) и се наречена потенциална енергия.

Използвайки тази формула, нека оценим енергийния капацитет на маса вода, изпомпана в резервоар с капацитет 1000 литра, повдигнат на 10 метра над нивото на земята (или нивото на турбина на хидрогенератор). Да приемем, че резервоарът има форма на куб с дължина на ръба 1 м. Тогава, според формулата в учебника на Ландсберг, A = 1000 kg · (9,8 m/s2) · 10,5 m = 102900 kg · m2/ s2. Но 1 kg m2/s2 е равен на 1 джаул и когато се преобразува във ватчасове, получаваме само 28,583 ватчаса. Тоест, за да получите енергиен капацитет, равен на капацитета на конвенционална електрическа батерия от 720 вата часа, трябва да увеличите обема на водата в резервоара с 25,2 пъти.

Резервоарът трябва да има дължина на ребрата приблизително 3 метра. В същото време неговият енергиен капацитет ще бъде равен на 845 ватчаса. Това е повече от капацитета на една батерия, но инсталационният обем е значително по-голям от размера на конвенционална оловно-цинкова автомобилна батерия. Това сравнение подсказва, че има смисъл да се разглежда не съхранената енергия в дадена система - енергия сама по себе си, а по отношение на масата или обема на въпросната система.

Специфичен енергиен капацитет

Така стигнахме до извода, че е препоръчително енергийният капацитет да се съпостави с масата или обема на устройството за съхранение или самия носител, например вода, излята в резервоар. Два индикатора от този вид могат да бъдат разгледани.

Ще наричаме специфичния енергиен капацитет на масата като енергийния капацитет на устройство за съхранение, разделен на масата на това устройство за съхранение.

Обемен специфичен енергиен капацитет ще бъде енергийният капацитет на устройство за съхранение, разделен на обема на това устройство за съхранение.

Пример. Оловно-киселинната батерия Panasonic LC-X1265P, предназначена за 12 волта, има заряд от 65 амперчаса, тежи 20 кг. и размери (ДхШхВ) 350 · 166 · 175 мм. Срокът на експлоатация при t = 20 C е 10 години. Така неговата специфична енергийна интензивност по маса ще бъде 65 · 12 / 20 = 39 ватчаса на килограм, а нейната обемна специфична енергийна интензивност ще бъде 65 · 12 / (3,5 · 1,66 · 1,75) = 76,7 ватчаса на кубичен дециметър или 0,0767 kWh на кубичен метър.

За обсъдени в предишен разделна гравитационно устройство за съхранение на енергия, базирано на резервоар за вода с обем 1000 литра, специфичната масова енергийна интензивност ще бъде само 28,583 ватчаса/1000 kg = 0,0286 Wh/kg, което е 1363 пъти по-малко от масовата енергийна интензивност на оловно-цинкова батерия. И въпреки че експлоатационният живот гравитационно съхранениеможе да се окаже значително по-голям, но от практическа гледна точка резервоарът изглежда по-малко привлекателен от батерия.

Нека да разгледаме още няколко примера за устройства за съхранение на енергия и да оценим тяхната специфична енергийна интензивност.

Енергиен капацитет на топлинния акумулатор

Топлинният капацитет е количеството топлина, погълнато от тялото, когато то се нагрее с 1 °C. В зависимост от това към коя количествена единица принадлежи топлинният капацитет се разграничават масов, обемен и моларен топлинен капацитет.

Масовият специфичен топлинен капацитет, наричан още просто специфичен топлинен капацитет, е количеството топлина, което трябва да се добави към единица маса на вещество, за да се загрее до единица температура. В SI се измерва в джаули, разделени на килограми на келвин (J kg−1 K−1).

Обемен топлинен капацитет е количеството топлина, което трябва да се достави на единица обем на веществото, за да се загрее на единица температура. В SI се измерва в джаули на кубичен метър на келвин (J m−3 K−1).

Моларен топлинен капацитет е количеството топлина, което трябва да се достави на 1 мол вещество, за да се загрее на единица температура. В SI се измерва в джаули на мол на келвин (J/(mol K)).

Молът е мерна единица за количеството вещество в Международната система от единици. Един мол е количеството вещество в система, съдържаща същото количество структурни елементи, колко атома има въглерод-12 с тегло 0,012 kg.

Специфичният топлинен капацитет се влияе от температурата на веществото и други термодинамични параметри. Например, измерването на специфичния топлинен капацитет на водата ще даде различни резултатипри 20 °C и 60 °C. В допълнение, специфичният топлинен капацитет зависи от това как е позволено да се променят термодинамичните параметри на веществото (налягане, обем и т.н.); например специфичният топлинен капацитет при постоянно налягане (CP) и при постоянен обем (CV) обикновено са различни.

Прехвърляне на материя от един агрегатно състояниекъм друго се придружава от рязка промяна на топлинния капацитет при определена температурна точка на трансформация за всяко вещество - точката на топене (преход твърдов течност), точка на кипене (преход на течност в газ) и съответно температури на обратни трансформации: замръзване и кондензация.

Специфичният топлинен капацитет на много вещества е даден в справочници, обикновено за процес при постоянно налягане. Например специфичен топлинен капацитет течна водапри нормални условия- 4200 J/(kg K); лед - 2100 J/(kg K).

Въз основа на представените данни можете да опитате да оцените топлинния капацитет на водния топлинен акумулатор (абстракт). Да приемем, че масата на водата в него е 1000 kg (литри). Загряваме до 80 °C и оставяме да отделя топлина, докато изстине до 30 °C. Ако не се притеснявате от факта, че топлинният капацитет е различен при различни температури, можем да предположим, че топлинният акумулатор ще отдели 4200 * 1000 * 50 J топлина. Тоест, енергийният капацитет на такъв топлинен акумулатор е 210 мегаджаула или 58,333 киловатчаса енергия.

Ако сравним тази стойност с енергийния заряд на конвенционална автомобилна батерия (720 ватчаса), виждаме, че енергийният капацитет на въпросния термоакумулатор е равен на енергийния капацитет на приблизително 810 електрически батерии.

Специфичната масова енергийна интензивност на такъв топлоакумулатор (дори без да се вземе предвид масата на съда, в който реално ще се съхранява нагрятата вода и масата на топлоизолацията) ще бъде 58,3 kWh/1000 kg = 58,3 Wh/kg. Това вече се оказва повече от масовата енергийна интензивност на оловно-цинкова батерия, равна, както е изчислено по-горе, на 39 Wh/kg.

По груби оценки топлинният акумулатор е сравним с конвенционалния автомобилен акумулатори чрез обемен специфичен енергиен капацитет, тъй като килограм вода е дециметър обем, следователно неговият обемен специфичен енергиен капацитет също е равен на 76,7 Wh/kg, което точно съвпада с обемния специфичен топлинен капацитет на оловно-киселинна батерия. Вярно е, че при изчислението на топлинния акумулатор взехме предвид само обема на водата, въпреки че би било необходимо да вземем предвид и обема на резервоара и топлоизолацията. Но във всеки случай загубата няма да е толкова голяма, колкото при гравитационно устройство за съхранение.

Други видове устройства за съхранение на енергия

Статията „Преглед на устройствата за съхранение на енергия (акумулатори)“ предоставя изчисления на специфичната енергийна интензивност на някои други устройства за съхранение на енергия. Нека вземем няколко примера от там

Съхранение на кондензатор

При капацитет на кондензатор от 1 F и напрежение от 250 V, съхранената енергия ще бъде: E = CU2 /2 = 1 ∙ 2502 /2 = 31,25 kJ ~ 8,69 W h. Ако използвате електролитни кондензатори, теглото им може да бъде 120 кг. Специфичната енергия на устройството за съхранение е 0,26 kJ/kg или 0,072 W/kg. По време на работа устройството може да осигури натоварване не повече от 9 W за един час. ЖивотЕлектролитните кондензатори могат да издържат до 20 години. По енергийна плътност йонисторите се доближават до химическите батерии. Предимства: акумулираната енергия може да се използва за кратък период от време.

Акумулатори тип гравитационно задвижване

Първо повдигаме тяло с тегло 2000 кг на височина 5 м. След това тялото се спуска под въздействието на гравитацията, въртяйки електрическия генератор. E = mgh ~ 2000 ∙ 10 ∙ 5 = 100 kJ ~ 27,8 W h. Специфичен енергиен капацитет 0,0138 Wh/kg. По време на работа устройството може да осигури натоварване не повече от 28 W за един час. Срокът на експлоатация на задвижването може да бъде 20 години или повече.

Предимства:натрупаната енергия може да се използва за кратък период от време.

Маховик

Съхранената енергия в маховика може да се намери по формулата E = 0,5 J w2, където J е инерционният момент на въртящото се тяло. За цилиндър с радиус R и височина H:

J = 0,5 p r R4 H

където r е плътността на материала, от който е направен цилиндърът.

Лимит линейна скороств периферията на маховика Vmax (приблизително 200 m/s за стомана).

Vmax = wmax R или wmax = Vmax /R

Тогава Emax = 0,5 J w2max = 0,25 p r R2 H V2max = 0,25 M V2max

Специфичната енергия ще бъде: Emax /M = 0,25 V2max

За стоманен цилиндричен маховик максималното специфично енергийно съдържание е приблизително 10 kJ/kg. За маховик с тегло 100 kg (R = 0,2 m, H = 0,1 m) максималната акумулирана енергия може да бъде 0,25 ∙ 3,14 ∙ 8000 ∙ 0,22 ∙ 0,1 ∙ 2002 ~ 1 MJ ~ 0,278 kWh. По време на работа устройството може да осигури натоварване не повече от 280 W за един час. Срокът на експлоатация на маховика може да бъде 20 години или повече. Предимства: натрупаната енергия може да се използва за кратък период от време, производителността може да бъде значително подобрена.

Супер маховик

Супер маховикът, за разлика от конвенционалните маховици, е способен на характеристики на дизайнатеоретично съхранява до 500 Wh на килограм тегло. Въпреки това, по някаква причина, развитието на superflywheels спря.

Пневматичен акумулатор

Въздух под налягане от 50 атмосфери се изпомпва в стоманен резервоар с капацитет 1 m3. За да издържат на това налягане, стените на резервоара трябва да са с дебелина приблизително 5 мм. За извършване на работата се използва въздух под налягане. При изотермичен процес работата А, извършена от идеален газ по време на разширяване в атмосферата, се определя по формулата:

A = (M / m) ∙ R ∙ T ∙ ln (V2 / V1)

където M е масата на газа, m - моларна масагаз, R - универсална газова константа, T - абсолютна температура, V1 - начален обем газ, V2 - краен обем газ. Като се вземе предвид уравнението на състоянието за идеален газ (P1 ∙ V1 = P2 ∙ V2) за това изпълнение на устройството за съхранение V2 / V1 = 50, R = 8,31 J/(mol deg), T = 293 0K, M / m ~ 50: 0,0224 ~ 2232, работа с газ по време на разширение 2232 ∙ 8,31 ∙ 293 ∙ ln 50 ~ 20 MJ ~ 5,56 kW · час на цикъл. Масата на задвижването е приблизително 250 кг. Специфичната енергия ще бъде 80 kJ/kg. По време на работа пневматичното устройство за съхранение може да осигури натоварване не повече от 5,5 kW за един час. Срокът на експлоатация на пневматичен акумулатор може да бъде 20 години или повече.

Предимства: резервоарът за съхранение може да бъде разположен под земята, като резервоар могат да се използват стандартни газови бутилки в необходимото количество с подходящо оборудване, когато се използва вятърен двигател, последният може директно да задвижва помпата на компресора, има достатъчно голям бройустройства, които директно използват енергия сгъстен въздух.

Сравнителна таблица на някои устройства за съхранение на енергия

Нека обобщим всички стойности на параметрите на устройствата за съхранение на енергия, получени по-горе, в обобщена таблица. Но първо, нека отбележим, че специфичната енергийна интензивност ни позволява да сравним устройствата за съхранение с конвенционалното гориво.

Основната характеристика на горивото е неговата топлина на изгаряне, т.е. количеството топлина, отделена при пълното изгаряне. Прави се разлика между специфична топлина на изгаряне (MJ/kg) и обемна топлина (MJ/m3). Преобразувайки MJ в kWh, получаваме:

гориво Енергиен капацитет (kWh/kg)
Дърва за горене 2,33-4,32
Маслени шисти 2,33 – 5,82
Торф 2,33 – 4,66
Кафяви въглища 2,92 -5,82
Въглища ДОБРЕ. 8.15
Антрацит 9,08 – 9,32
Масло 11,63
Бензин 12,8 kWh/kg, 9,08 kWh/литър

Както виждаме, специфичната енергийна интензивност на горивото значително надвишава енергийната интензивност на устройствата за съхранение на енергия. Защото като резервен източникчесто се използват енергии дизелови генератори, ще включим във финалната таблица енергийната интензивност на дизеловото гориво, която е равна на 42624 kJ/kg или 11,84 kW-часа/kg. И нека добавим природния газ и водорода за сравнение, тъй като последният може да послужи и като основа за създаване на устройства за съхранение на енергия.

Специфичното масово енергийно съдържание на газ в бутилки (пропан-бутан) е 36 mJ/kg. или 10 kWh/kg, а за водород - 33,58 kWh/kg.

В резултат на това получаваме следната таблица с параметрите на разглежданите устройства за съхранение на енергия (последните два реда в тази таблица са добавени за сравнение с традиционните енергийни носители):

Енергиен запас Характеристики на възможно
внедряване на задвижване
Заредени
енергия, kWh
Специфичен енергиен капацитет,
W h/kg
Максимално време на работа
за товар от 100 W, минути
Обемна специфична енергийна интензивност,
W h/dm3
Живот,
години
Копрови Тегло на пилота 2 т, вис
асансьор 5м
0,0278 0.0139 16,7 2,78/обем пилон в dm повече от 20
Хидравлична гравитация Водна маса 1000 kg, височина на изпомпване 10 m 0,0286 0,0286 16,7 0,0286 повече от 20
Кондензатор Капацитет на батерията 1 F,
напрежение 250 V, тегло 120 кг
0,00868 0.072 5.2 0,0868 до 20
Маховик Стоманен маховик с тегло 100 кг, диаметър 0,4 м, дебелина 0,1 м 0,278 2,78 166,8 69,5 повече от 20
Оловно-киселинна батерия Капацитет 190 Ah, изходно напрежение 12 V, тегло 70 кг 1,083 15,47 650 60-75 3 … 5
Пневматичен Стоманен резервоаробем 1 m3 с тегло 250 kg със сгъстен въздух под налягане 50 атмосфери 0,556 22,2 3330 0,556 повече от 20
Термоакумулатор Обем на водата 1000 л., загрята до 80 °C, 58,33 58,33 34998 58,33 до 20
Водороден цилиндър Обем 50 л., плътност 0,09 кг/м³, компресия 10:1 (тегло 0,045 кг) 1,5 33580 906,66 671600 повече от 20
Бутилка за пропан-бутан Обем на газа 50 l, плътност 0,717 kg/m³, степен на компресия 10:1 (тегло 0,36 kg) 3,6 10000 2160 200000 повече от 20
Канистър с дизелово гориво Обем 50л. (=40 кг) 473,6 11840 284160 236800 повече от 20

Цифрите, дадени в тази таблица, са много приблизителни; изчисленията не вземат предвид много фактори, например коеф. полезно действиетози генератор, който използва съхранена енергия, обеми и тегла необходимо оборудванеи така нататък. Тези цифри обаче позволяват според мен да се даде първоначална оценка на потенциалната енергийна интензивност различни видовеустройства за съхранение на енергия.

И, както следва от таблицата по-горе, най-много ефектен външен видУстройството за съхранение е представено от цилиндър с водород. Ако за производството на водород се използва „безплатна“ (излишна) енергия от възобновяеми източници, тогава устройството за съхранение на водород може да се окаже най-обещаващото.

Водородможе да се използва като гориво в конвенционален двигател с вътрешно горене, който ще върти електрически генератор, или във водород горивни клеткикоито директно произвеждат електричество. Въпросът кой метод е по-изгоден изисква отделно разглеждане. Е, проблемите на безопасността при производството и използването на водород могат да направят корекции при разглеждането на осъществимостта на използването на един или друг тип устройство за съхранение на енергия. публикувани

Присъединете се към нас

Веригата на технологичния цикъл на производство на електроенергия задължително включва такава връзка като устройство за съхранение (батерия). IN традиционни начиниПри производството на електроенергия енергийните резерви се натрупват в предварителна, „неелектрическа“ форма и тази връзка, единицата за съхранение на енергия, се намира непосредствено пред електрическия генератор.

Резервоарът на водноелектрическата централа е предназначен за акумулиране потенциална енергияречна вода в гравитационното поле на Земята, издигайки я до определена височина с помощта на бент. ТЕЦнатрупва в складовите си съоръжения необходимите за непрекъсната работа запаси от твърдо или течно гориво или го доставя по тръбопровод природен газ, чиято калоричност гарантира необходимия енергиен запас. Реакторните пръти на атомните електроцентрали представляват запас от ядрено гориво, който разполага с определен ресурс от ядрена енергия за използване.

Режимът на постоянна мощност е достъпен за всички изброени типове генератори. Количеството произведена енергия се регулира от в широки границив зависимост от нивото на непосредствена консумация на енергия. Алтернативните източници (вятърна, приливна, геотермална, слънчева енергия) не могат да осигурят гаранция постоянна мощностгенератор при необходимото този моментниво. Следователно устройството за съхранение не е толкова място за съхранение на ресурси, колкото устройство за затихване, което прави консумацията на енергия по-малко зависима от колебанията в мощността на източника. Енергията на източника се натрупва в устройството за съхранение и по-късно се консумира, ако е необходимо, във формата електрическа енергия. Освен това цената му до голяма степен зависи от цената на устройството.

Характерна особеност на устройството за съхранение при алтернативни източници на енергия е, че акумулираната в него енергия може да се изразходва за други цели. Например с тяхна помощ могат да се генерират силни и свръхсилни магнитни полета.

Единиците за измерване на енергия, приети във физиката и енергетиката и отношенията между тях: 1 kWh, или 1000 W 3600 s - същото като 3,6 MJ. Съответно, 1 MJ е еквивалентен на 1/3,6 kWh, или 0,278 kWh

Някои често срещани устройства за съхранение на енергия:

Нека направим резервация веднага: този преглед не е такъв пълна класификацияустройства за съхранение, използвани в енергийния сектор, в допълнение към дискутираните тук, има термични, пружинни, индукционни и различни други видове устройства за съхранение на енергия.

1. Съхранение тип кондензатор

Енергията, съхранявана от кондензатор 1 F при напрежение 220 V, е: E = CU2 /2 = 1 2202 /2 kJ = 24 200 J = 0,0242 MJ ~ 6,73 Wh Теглото на един такъв електролитен кондензатор може да достигне 120 kg. На единица маса специфична енергиясе оказва равна на малко над 0,2 kJ/kg. Почасовата работа на задвижването е възможна при натоварване в рамките на 7 W. Електролитни кондензаториможе да продължи до 20 години. Йонисторите (суперкондензаторите) имат висока енергийна и мощностна плътност (около 13 Wh/l = 46,8 kJ/l и съответно до 6 kW/l), с ресурс от около 1 милион цикъла на презареждане. Безспорното предимство на кондензаторното устройство за съхранение е способността да се използва натрупаната енергия за кратък период от време.

2. Устройства за съхранение от гравитационен тип

Устройствата за съхранение на енергия от типа на забиване на пилоти съхраняват енергия при повдигане на забивач с тегло 2 тона или повече на височина около 4 м. Движението на движещата се част на забивача на пилоти освобождава потенциалната енергия на тялото, предавайки я на електрически генератор. Количеството произведена енергия E = mgh в идеалния случай (без да се вземат предвид загубите от триене) ще бъде ~ 2000 10 4 kJ = 80 kJ ~ 22,24 Wh.Специфичната енергия на единица маса на жената от копра се оказва равна на 0,04 kJ/kg. В рамките на един час устройството е в състояние да осигури натоварване до 22 W. Очакван експлоатационен живот механичен дизайннадхвърля 20 години. Енергията, натрупана от тялото в гравитационно поле, също може да бъде изразходвана за кратък период от време, което е предимство на тази опция.

Хидравличният акумулатор използва енергията на водата (с тегло около 8-10 тона), изпомпана от кладенец в резервоара на водна кула. При обратно движение, под въздействието на гравитацията, водата върти турбината на електрогенератора. Една конвенционална вакуумна помпа може лесно да изпомпва вода на височина до 10 м. Съхранената енергия е E = mgh ~ 10000 8 10 J = 0,8 MJ = 0,223 kW час. Специфичната енергия за единица маса се оказва равна на 0,08 kJ/kg. Натоварването, осигурено от устройството за един час, е в рамките на 225 W. Задвижването може да продължи 20 години или повече. Вятърният двигател може директно да задвижва помпата (без да преобразува енергията в електричество, което е свързано с определени загуби), водата в резервоара на кулата може, ако е необходимо, да се използва за други нужди.

3. Съхранение на базата на маховик

Кинетичната енергия на въртящ се маховик се определя, както следва: E = J w2/2, J означава собственият инерционен момент на металния цилиндър (тъй като той се върти около оста на симетрия), w е ъгловата скорост на въртене.

С радиус R и височина H цилиндърът има инерционен момент:

J = M R^2 /2 = pi * p R^4 H/2

където p е плътността на метала - материала на цилиндъра, произведението pi* R^2 H е неговият обем.

Максималната възможна линейна скорост на точките на повърхността на цилиндъра Vmax (е около 200 m/s за стоманен маховик).

Vmax = wmax*R, откъдето wmax = Vmax/R

Максимална възможна енергия на въртене Emax = J wmax^2/2 = 0,25 pi*p R2^2 H V2max = 0,25 M Vmax^2

Енергията на единица маса е: Emax/M = 0,25 Vmax^2

Специфичната енергия, ако цилиндричният маховик е стоманен, ще бъде около 10 kJ/kg. Маховик с тегло 200 kg (с линейни размери H = 0,2 m, R = 0,2 m) съхранява енергия Emax = 0,25 pi 8000 0,22 0,2 ​​2002 ~ 2 MJ ~ 0,556 kWh Максималното натоварване, осигурено от устройството за съхранение на маховика за един час, не надвишава 560 W. Маховикът може да издържи 20 или повече години. Предимства: бързо освобождаване на натрупаната енергия, възможност за значително подобряване на характеристиките чрез избор на материал и промяна геометрични характеристикимаховик.

4. Съхранение под формата на химикал батерия(оловна киселина)

Класическа акумулаторна батерия с капацитет 190 Ah при изходно напрежение 12 V и 50% разряд е в състояние да достави ток от около 10 A за 9 часа. Освободената енергия ще бъде 10 A 12 V 9 h = 1,08 kWh или приблизително 3,9 MJ на цикъл. Приемайки масата на батерията равна на 65 kg, имаме специфична енергия от 60 kJ/kg. Максималното натоварване, което батерията може да осигури за един час, не надвишава 1080 W. Гаранционен срокСрокът на експлоатация на висококачествена батерия е в рамките на 3 - 5 години, в зависимост от интензивността на употреба. Възможно е директно получаване на електричество от батерията с изходен ток, достигащ хиляди ампера, с изходно напрежение 12 V, съответстващо на автомобилния стандарт. Много устройства, проектирани за постоянно напрежение от 12 V, са съвместими с батерията; налични са преобразуватели 12/220 V с различна изходна мощност.

5. Пневматичен тип съхранение

Въздухът, изпомпван в стоманен резервоар с обем от 1 кубичен метър до налягане от 40 атмосфери, извършва работа при условия на изотермично разширение. Работата А, извършена от идеален газ при условия T=const, се определя по формулата:

A = (M / mu) R T ln (V2 / V1)

Тук M е масата на газа, mu е масата на 1 мол от същия газ, R = 8,31 J/(mol K), T е температурата, изчислена по абсолютната скала на Келвин, V1 и V2 са началната и крайната обем, зает от газа (при това V2 / V1 = 40, когато се разшири до атмосферно наляганевътре в резервоара). За изотермично разширение е валиден законът на Бойл-Мариот: P1V1 = P2 V2. Да вземем T = 298 0K (250C) За въздух M / mu ~ 40: 0,0224 = 1785,6 мола вещество, газът върши работа A = 1785,6 8,31 298 ln 50 ~ 16 MJ ~ 4,45 kWh на цикъл. Стените на резервоара, проектирани за налягане от 40-50 атмосфери, трябва да имат дебелина най-малко 5 mm, поради което масата на устройството за съхранение ще бъде около 250 kg. Съхранени данни пневматично съхранениеспецифичната енергия ще бъде равна на 64 kJ/kg. Максималната мощност, осигурена от пневматичния акумулатор за един час работа, ще бъде 4,5 kW. Гарантирана продължителност на живота, като повечето устройства, базирани на производителност механична работаконструктивните им части са от 20г. Предимства на този вид съхранение: възможност за разполагане на резервоара под земята; резервоарът може да бъде стандартен газов цилиндър, като се използва подходящо оборудване; вятърният двигател е в състояние директно да предава движение към помпата на компресора. В допълнение, много устройства директно използват съхранената енергия от сгъстен въздух в резервоар.

Представяме параметрите на разглежданите видове устройства за съхранение на енергия в обобщена таблица:

Тип

устройство за съхранение на енергия

Очаквани експлоатационни характеристики

Съхранено количество
енергия, kJ

Специфична енергия (на единица маса на устройството), kJ/kg

Максимално натоварване, когато задвижването работи за един час,

У

Очакван експлоатационен живот
в годините

Тип кондензатор

капацитет на батерията 1 F,
напрежение 220 V, тегло 120 кг

24,2

в рамките на 20

Копро тип

тегло на женска копра 2000кг макс
височина 4м

0.04

най-малко 20

Гравитационен хидравличен тип

течна маса 8000 кг, височина 10 м

0.08

най-малко 20

Маховик

цилиндричен маховик, изработен от стомана тегло
200 кг, радиус 0,2 м,
дебелина 0,2м

2000

най-малко 20

Оловно-киселинна батерия

капацитет на батерията 190 A час,
изходно напрежение 12 V,
тегло на батерията 60 кг

3900

1080

минимум 3 максимум 5

Пневматичен тип

стоманен резервоар с вмест
1 m 3,

тегло на резервоара 2,5 c налягане на сгъстен въздух 40
атмосфери

16000

4500

най-малко 20