Главная · Измерения · Показатель преломления обозначение. Особенности явления преломления света с точки зрения физики

Показатель преломления обозначение. Особенности явления преломления света с точки зрения физики

При решении задач по оптике часто требуется знать показатель преломления стекла, воды или другого вещества. Причем в разных ситуациях могут быть задействованы как абсолютные, так и относительные значения этой величины.

Два вида показателя преломления

Сначала о том, что это число показывает: как изменяет направление распространения света та или иная прозрачная среда. Причем электромагнитная волна может идти из вакуума, и тогда показатель преломления стекла или другого вещества будет называться абсолютным. В большинстве случаев его величина лежит в пределах от 1 до 2. Только в очень редких случаях показатель преломления оказывается больше двух.

Если же перед предметом находится более плотная, чем вакуум, среда, то говорят уже об относительном значении. И рассчитывается он как отношение двух абсолютных величин. Например, относительный показатель преломления вода-стекло будет равен частному абсолютных величин для стекла и воды.

В любом случае она обозначается латинской буквой «эн» - n. Эта величина получается путем деления друг на друга одноименных величин, поэтому является просто коэффициентом, у которого нет наименования.

По какой формуле можно сосчитать показатель преломления?

Если принять угол падения за «альфа», а угол преломления обозначить «бэта», то формула абсолютного значения коэффициента преломления выглядит так: n = sin α/sin β. В англоязычной литературе часто можно встретить другое обозначение. Когда угол падения оказывается i, а преломления — r.

Существует еще другая формула того, как можно вычислить показатель преломления света в стекле и прочих прозрачных средах. Она связана со скоростью света в вакууме и ею же, но уже в рассматриваемом веществе.

Тогда она выглядит так: n = c/νλ. Здесь с — скорость света в вакууме, ν — его скорость в прозрачной среде, а λ — длина волны.

От чего зависит показатель преломления?

Он определяется той скоростью, с которой свет распространяется в рассматриваемой среде. Воздух в этом отношении очень близок к вакууму, поэтому световые волны в нем распространяются практически не отклоняются от своего первоначального направления. Поэтому, если определяется показатель преломления стекло-воздух или какое-либо другое вещество, граничащее с воздухом, то последний условно принимается за вакуум.

Любая другая среда имеет свои собственные характеристики. У них разные плотности, они имеют собственную температуру, а также упругие напряжения. Все это сказывается на результате преломления света веществом.

Не последнюю роль в изменении направления распространения волн играют характеристики света. Белый свет состоит из множества цветов, от красного до фиолетового. Каждая из частей спектра преломляется по-своему. Причем значение показателя для волны красной части спектра всегда будет меньше, чем у остальных. К примеру, показатель преломления стекла марки ТФ-1 изменяется от 1,6421 до 1,67298 соответственно от красной до фиолетовой части спектра.

Примеры значений для разных веществ

Здесь приведены значения абсолютных величин, то есть коэффициент преломления при прохождении луча из вакуума (что приравнивается к воздуху) через другое вещество.

Эти цифры потребуются, если нужно будет определить показатель преломления стекла относительно других сред.

Какие еще величины используются при решении задач?

Полное отражение. Оно наблюдается при переходе света из более плотной среды в менее плотную. Здесь при определенном значении угла падения преломление происходит под прямым углом. То есть луч скользит вдоль границы двух сред.

Предельный угол полного отражения — это его минимальное значение, при котором свет не выходит в менее плотную среду. Меньше него — происходит преломление, а больше — отражение в ту же среду, из которой свет перемещался.

Задача № 1

Условие. Показатель преломления стекла имеет значение 1,52. Необходимо определить предельный угол, на который полностью отражается свет от раздела поверхностей: стекла с воздухом, воды с воздухом, стекла с водой.

Потребуется воспользоваться данными показателем преломления для воды, данным в таблице. Он же для воздуха принимается равным единице.

Решение во всех трех случаях сводится к расчетам по формуле:

sin α 0 /sin β = n 1 /n 2 , где n 2 относится к той среде, из которой распространяется свет, а n 1 куда проникает.

Буквой α 0 обозначен предельный угол. Значение угла β равно 90 градусам. То есть его синус будет единицей.

Для первого случая: sin α 0 = 1 /n стекла, тогда предельный угол оказывается равным арксинусу от 1 /n стекла. 1/1,52 = 0,6579. Угол равен 41,14º.

Во втором случае при определении арксинуса нужно подставить значение показателя преломления воды. Дробь 1 /n воды примет значение1/1,33 = 0, 7519. Это арксинус угла 48,75º.

Третий случай описывается отношением n воды и n стекла. Арксинус потребуется вычислить для дроби: 1,33/1,52, то есть числа 0,875. Находим значение предельного угла по его арксинусу: 61,05º.

Ответ: 41,14º, 48,75º, 61,05º.

Задача № 2

Условие. В сосуд с водой погружена стеклянная призма. Ее показатель преломления равен 1,5. В основе призмы лежит прямоугольный треугольник. Больший катет расположен перпендикулярно дну, а второй — ему параллелен. Луч света падает нормально на верхнюю грань призмы. Каким должен быть наименьший угол между горизонтально расположенным катетом и гипотенузой, чтобы свет достиг катета, расположенного перпендикулярно к дну сосуда, и вышел из призмы?

Для того, чтобы луч вышел из призмы описанным образом, ему необходимо упасть под предельным углом на внутреннюю грань (ту, которая в сечении призмы является гипотенузой треугольника). Этот предельный угол оказывается по построению равным искомому углу прямоугольного треугольника. Из закона преломления света получается, что синус предельного угла, деленный на синус 90 градусов, равен отношению двух показателей преломления: воды к стеклу.

Расчеты приводят к такому значению для предельного угла: 62º30´.

Закон преломления света. Абсолютный и относительный показатели (коэффициенты) преломления. Полное внутреннее отражение

Закон преломления света был установлен опытным путем в XVII веке. При переходе света из одной прозрачной среды в другую направление света может меняться. Изменение направления света на границе разных сред называется преломлением света. Вседствие преломления происходит кажущееся изменение формы предмета. (пример: ложка в стакане с водой). Закон преломления света: На границе 2ух сред преломленный луч лежит в плоскости падения и образует с нормальню к границе раздела,восстановленной в точке падения, угол приломления, такой, что: =n 1-падения, 2 отражения,n-показатель преломления (ф. Снелиуса) - относительный показатель Показатель преломления луча, падающего на среду из безвоздушного пространства, называется его абсолютным показателем преломления. Угол падения, при котором преломленный луч начинает скользить по границе раздела двух сред без перехода в оптически более плотную среду – предельный угол полного внутреннего отражения. Полное внутреннее отражение - внутреннее отражение, при условии, что угол падения превосходит некоторый критический угол. При этом падающая волна отражается полностью, и значение коэффициента отражения превосходит его самые большие значения для полированных поверхностей. Коэффициент отражения при полном внутреннем отражении не зависит от длины волны. В оптике это явление наблюдается для широкого спектра электромагнитного излучения, включая рентгеновский диапазон. В геометрической оптике явление объясняется в рамках закона Снелла. Учитывая, что угол преломления не может превышать 90°, получаем, что при угле падения, синус которого больше отношения меньшего коэффициента преломления к большему коэффициенту, электромагнитная волна должна полностью отражаться в первую среду. Пример: Яркий блеск многих природных кристаллов, а в особенности - огранённых драгоценных и полудрагоценных камней объясняется полным внутренним отражением, в результате которого каждый вошедший в кристалл луч образует большое количество достаточно ярких вышедших лучей, окрашенных в результате дисперсии.

В курсе физики 8 класса вы познакомились с явлением преломления света. Теперь вы знаете, что свет представляет собой электромагнитные волны определенного диапазона частот. Опираясь на знания о природе света, вы сможете понять физическую причину преломления и объяснить многие другие связанные с ним световые явления.

Рис. 141. Переходя из одной среды в другую, луч преломляется, т. е. меняет направление распространения

Согласно закону преломления света (рис. 141):

  • лучи падающий, преломлённый и перпендикуляр, проведённый к границе раздела двух сред в точке падения луча, лежат в одной плоскости; отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред

где n 21 - относительный показатель преломления второй среды относительно первой.

Если луч переходит в какую-либо среду из вакуума, то

где n - абсолютный показатель преломления (или просто показатель преломления) второй среды. В этом случае первой «средой» является вакуум, абсолютный показатель которого принят за единицу.

Закон преломления света был открыт опытным путём голландским учёным Виллебордом Снеллиусом в 1621 г. Закон был сформулирован в трактате по оптике, который нашли в бумагах учёного после его смерти.

После открытия Снеллиуса несколькими учёными была выдвинута гипотеза о том, что преломление света обусловлено изменением его скорости при переходе через границу двух сред. Справедливость этой гипотезы была подтверждена теоретическими доказательствами, выполненными независимо друг от друга французским математиком Пьером Ферма (в 1662 г.) и голландским физиком Христианом Гюйгенсом (в 1690 г.). Разными путями они пришли к одному и тому же результату, доказав, что

  • отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред, равная отношению скоростей света в этих средах:

Из уравнения (3) следует, что если угол преломления β меньше угла падения а, то свет данной частоты во второй среде распространяется медленнее, чем в первой, т. е. V 2

Взаимосвязь величин, входящих в уравнение (3), послужила веским основанием для появления ещё одной формулировки определения относительного показателя преломления:

  • относительным показателем преломления второй среды относительно первой называется физическая величина, равная отношению скоростей света в этих средах:

n 21 = v 1 / v 2 (4)

Пусть луч света переходит из вакуума в какую-либо среду. Заменив в уравнении (4) v1 на скорость света в вакууме с, а v 2 на скорость света в среде v, получим уравнение (5), являющееся определением абсолютного показателя преломления:

  • абсолютным показателем преломления среды называется физическая величина, равная отношению скорости света в вакууме к скорости света в данной среде:

Согласно уравнениям (4) и (5), n 21 показывает, во сколько раз меняется скорость света при его переходе из одной среды в другую, a n - при переходе из вакуума в среду. В этом заключается физический смысл показателей преломления.

Значение абсолютного показателя преломления п любого вещества больше единицы (в этом убеждают данные, содержащиеся в таблицах физических справочников). Тогда, согласно уравнению (5), c/v > 1 и с > v, т. е. скорость света в любом веществе меньше скорости света в вакууме.

Не приводя строгих обоснований (они сложны и громоздки), отметим, что причиной уменьшения скорости света при его переходе из вакуума в вещество является взаимодействие световой волны с атомами и молекулами вещества. Чем больше оптическая плотность вещества, тем сильнее это взаимодействие, тем меньше скорость света и тем больше показатель преломления. Таким образом, скорость света в среде и абсолютный показатель преломления определяются свойствами этой среды.

По числовым значениям показателей преломления веществ можно сравнивать их оптические плотности. Например, показатели преломления различных сортов стекла лежат в пределах от 1,470 до 2,040, а показатель преломления воды равен 1,333. Значит, стекло - среда оптически более плотная, чем вода.

Обратимся к рисунку 142, с помощью которого можно пояснить, почему на границе двух сред с изменением скорости меняется и направление распространения световой волны.

Рис. 142. При переходе световых волн из воздуха в воду скорость света уменьшается, фронт волны, а вместе с ним и её скорость меняют направление

На рисунке изображена световая волна, переходящая из воздуха в воду и падающая на границу раздела этих сред под углом а. В воздухе свет распространяется со скоростью v 1 , а в воде - с меньшей скоростью v 2 .

Первой до границы доходит точка А волны. За промежуток времени Δt точка В, перемещаясь в воздухе с прежней скоростью v 1 , достигнет точки В". За то же время точка А, перемещаясь в воде с меньшей скоростью v 2 , пройдёт меньшее расстояние, достигнув только точки А". При этом так называемый фронт волны А"В" в воде окажется повёрнутым на некоторый угол по отношению к фронту АВ волны в воздухе. А вектор скорости (который всегда перпендикулярен к фронту волны и совпадает с направлением её распространения) поворачивается, приближаясь к прямой ОО", перпендикулярной к границе раздела сред. При этом угол преломления β оказывается меньше угла падения α. Так происходит преломление света.

Из рисунка видно также, что при переходе в другую среду и повороте волнового фронта меняется и длина волны: при переходе в оптически более плотную среду уменьшается скорость, длина волны тоже уменьшается (λ 2 < λ 1). Это согласуется и с известной вам формулой λ = V/v, из которой следует, что при неизменной частоте v (которая не зависит от плотности среды и поэтому не меняется при переходе луча из одной среды в другую) уменьшение скорости распространения волны сопровождается пропорциональным уменьшением длины волны.

Вопросы

  1. Какое из двух веществ является оптически более плотным?
  2. Как определяются показатели преломления через скорость света в средах?
  3. Где свет распространяется с наибольшей скоростью?
  4. Какова физическая причина уменьшения скорости света при его переходе из вакуума в среду или из среды с меньшей оптической плотностью в среду с большей?
  5. Чем определяются (т. е. от чего зависят) абсолютный показатель преломления среды и скорость света в ней?
  6. Расскажите, что иллюстрирует рисунок 142.

Упражнение

Преломления называют некое отвлеченное число, которое характеризует преломляющую способность какой-либо прозрачной среды. Обозначать ее принято n. Различают абсолютный показатель преломления и коэффициент относительный.

Первый рассчитывается по одной из двух формул:

n = sin α / sin β = const (где sin α - синус угла падения, а sin β - синус луча света, входящего в рассматриваемую среду из пустоты)

n = c / υ λ (где с - скорость света в пустоте, υ λ - скорость света в исследуемой среде).

Здесь расчет показывает, во сколько раз свет изменяет скорость своего распространения в момент перехода из вакуума в прозрачную среду. Таким образом определяется показатель преломления (абсолютный). Для того чтобы узнать относительный, используют формулу:

То есть при этом рассматриваются абсолютные показатели преломления веществ разной плотности, например воздуха и стекла.

Если говорить в общем, то абсолютные коэффициенты любых тел, будь то газообразных, жидких или твердых, всегда больше 1. В основном их значения колеблются от 1 до 2. Выше 2 эта величина может быть только в исключительных случаях. Значение данного параметра для некоторых сред:

Эта величина в применении к самому твердому природному веществу на планете, алмазу, составляет 2,42. Очень часто при проведении научных изысканий и т. д. требуется знать показатель преломления воды. Этот параметр составляет 1,334.

Поскольку длина волны - показатель, разумеется, непостоянный, к букве n приписывается индекс. Его значение и помогает понять, к какой волне спектра данный коэффициент относится. При рассмотрении одного и того же вещества, но с увеличением длины световой волны, показатель преломления будет уменьшаться. Этим обстоятельством и вызвано разложение света на спектр при прохождении через линзу, призму и т. д.

По величине коэффициента преломления можно определить, к примеру, сколько одного вещества растворено в другом. Это бывает полезным, допустим, в пивоварении или когда необходимо узнать концентрацию сахара, фруктов или ягод в соке. Данный показатель важен и при определении качества нефтепродуктов, и в ювелирном деле, когда нужно доказать подлинность камня и т. д.

Без использования какого-либо вещества шкала, видимая в окуляре прибора, будет полностью окрашена в голубой цвет. Если капнуть на призму обычной дистиллированной воды, при правильной калибровке инструмента граница синего и белого цветов будет проходить строго по нулевой отметке. При исследовании другого вещества она сместится по шкале согласно тому, какой показатель преломления ему свойственен.

Преломление или рефракция - это явление, при котором происходит изменение направленности луча света, или иных волн, когда они переходят границу, разделяющую две среды, как прозрачные (пропускающие эти волны), так и внутри среды, в которой непрерывно изменяются свойства.

С явлением преломления мы сталкиваемся довольно часто и воспринимаем обыденным явлением: можем увидеть, что палочка, находящаяся в прозрачном стакане с окрашенной жидкостью, «переломлена» в месте раздела воздуха и воды (рис. 1). При преломлении и отражении света во время дождя мы радуемся, увидев радугу (рис. 2).

Показатель преломления - важная характеристика вещества, связанная с его физико-химическими свойствами. Он находится в зависимости от значений температур, а также от длины световых волн, при которых проводится определение. По данным контроля качества в растворе на показатель преломления влияет концентрация растворенного в нем вещества, а также природа растворителя. В частности, на показатель преломления кровяной сыворотки влияет количество белка, содержащегося в ней.Это происходит из-за того, что при разной скорости распространения световых лучей в средах, имеющих различную плотность, их направление изменяется в месте раздела двух сред. Если мы разделим световую скорость в вакууме на световую скорость в исследуемом веществе, получится показатель преломления абсолютный (индекс рефракции). Практически определяется показатель преломления относительный (n ), представляющий собой отношение световой скорости в воздухе к световой скорости в исследуемом веществе.

Количественно показатель преломления определяют, используя специальный прибор - рефрактометр.

Рефрактометрия - один из наиболее легких методов физического анализа и может применяться в лабораториях контроля качества при производстве химической, пищевой, биологически активных добавок к пище , косметической и других видов продукции с минимальными затратами времени и количества исследуемых проб.

Конструкция рефрактометра основана на том, что лучи света полностью отражаются, когда переходят через границу двух сред (одна из них – это призма из стекла, другая – исследуемый раствор) (рис. 3).

Рис. 3. Схема рефрактометра

От источника (1) световой луч падает на зеркальную поверхность (2), затем, отражаясь, переходит в верхнюю призму осветительную (3), потом в нижнюю призму измерительную (4), которая изготовлена из стекла, обладающего большим показателем преломления. Между призмами (3) и (4) с помощью капилляра наносят 1–2 капельки пробы. Чтобы не нанести призме механических повреждений, необходимо не касаться капилляром ее поверхности.

В окуляр (9) видят поле с перекрещенными линиями, чтобы установить границу раздела. Перемещая окуляр, точку пересечения полей нужно совместить с границей раздела (рис. 4).Плоскость призмы (4) играет роль границы раздела, на поверхности которой преломляется световой луч. Так как лучи рассеиваются, граница света и тени получается расплывчатой, радужной. Это явление устраняется компенсатором дисперсии (5). Затем луч пропускается объективом (6) и призмой (7). На пластине (8) имеются штрихи визирные (две прямые линии, пересеченные крестообразно), а также шкала с показателями преломления, которая наблюдается в окуляр (9). По ней и отсчитывается показатель преломления.

Линия раздела границ полей будет соответствовать углу внутреннего полного отражения, зависящего от показателя преломления пробы.

Рефрактометрия применяется с целью установления чистоты и подлинности вещества. Этот метод применяется также, чтобы при контроле качества определить концентрацию веществ в растворах, которую вычисляют по градуировочному графику (график, показывающий зависимость показателя преломления пробы от ее концентрации).

В компании «КоролёвФарм» показатель преломления определяется согласно утвержденной нормативной документации при входном контроле сырья , в экстрактах собственного производства , а также при выпуске готовой продукции. Определение производится квалифицированными сотрудниками аккредитованной физико-химической лаборатории с помощью рефрактометра ИРФ – 454 Б2М.

Если по результатам входного контроля сырья показатель преломления не соответствует необходимым требованиям, отделом контроля качества оформляется Акт о несоответствии, на основании которого данная партия сырья возвращается поставщику.

Методика определения

1. Перед началом измерений проверяется чистота поверхностей призм, соприкасающихся между собой.

2. Проверка точки нуля. На поверхность призмы измерительной наносим 2÷3 капли воды дистиллированной, осторожно закрываем призмой осветительной. Открываем осветительное окошко и, применяя зеркало, устанавливаем световой источник в наиболее интенсивном направлении. Вращая винты окуляра, получаем в его поле зрения четкое, резкое разграничение темного и светлого полей. Вращаем винт и наводим линию тени и света так, чтобы она совпала с точкой, в которой пересекаются линии в верхнем окошке окуляра. На вертикальной линии в нижнем окошке окуляра видим нужный результат – показатель преломления воды дистиллированной при 20 ° С (1,333). Если показания другие, устанавливаем винтом показатель преломления на значение 1,333, и с помощью ключа (снять винт регулировочный) приводим границу тени и света к месту точки пересечения линий.

3. Определяем коэффициент преломления. Приподнимаем камеру призмы осветительной и бумагой фильтровальной или салфеткой марлевой снимаем воду. Далее наносим 1-2 капли испытуемого раствора на поверхность призмы измерительной и закрываем камеру. Вращаем винты до момента, пока границы тени и света не совпадут с точкой пересечения линий. На вертикальной линии в нижнем окошке окуляра видим нужный результат – показатель преломления исследуемой пробы. Производим подсчет коэффициента преломления по шкале в нижнем окошке окуляра.

4. Используя градуировочный график, устанавливаем взаимосвязь между концентрацией раствора и показателем преломления. Чтобы построить график необходимо приготовить стандартные растворы нескольких концентраций, используя препараты химически чистых веществ, измерить их показатели преломления и отложить полученные значения на оси ординат, на оси абсцисс отложить соответствующие концентрации растворов. Необходимо выбирать интервалы концентраций, при которых между концентрацией и показателем преломления наблюдается зависимость линейная. Измеряем показатель преломления исследуемой пробы и с помощью графика определяем его концентрацию.