home · Installation · Finding the inverse matrix through the identity matrix. Higher mathematics

Finding the inverse matrix through the identity matrix. Higher mathematics

For any non-singular matrix A there is a unique matrix A -1 such that

A*A -1 =A -1 *A = E,

where E is the identity matrix of the same orders as A. The matrix A -1 is called the inverse of matrix A.

In case someone forgot, in the identity matrix, except for the diagonal filled with ones, all other positions are filled with zeros, an example of an identity matrix:

Finding the inverse matrix using the adjoint matrix method

The inverse matrix is ​​defined by the formula:

where A ij - elements a ij.

Those. To calculate the inverse matrix, you need to calculate the determinant of this matrix. Then find the algebraic complements for all its elements and compose a new matrix from them. Next you need to transport this matrix. And divide each element of the new matrix by the determinant of the original matrix.

Let's look at a few examples.

Find A -1 for a matrix

Solution. Let's find A -1 using the adjoint matrix method. We have det A = 2. Let us find the algebraic complements of the elements of matrix A. In this case, the algebraic complements of the matrix elements will be the corresponding elements of the matrix itself, taken with a sign in accordance with the formula

We have A 11 = 3, A 12 = -4, A 21 = -1, A 22 = 2. We form the adjoint matrix

We transport the matrix A*:

We find the inverse matrix using the formula:

We get:

Using the adjoint matrix method, find A -1 if

Solution. First of all, we calculate the definition of this matrix to verify the existence of the inverse matrix. We have

Here we added to the elements of the second row the elements of the third row, previously multiplied by (-1), and then expanded the determinant for the second row. Since the definition of this matrix is ​​nonzero, its inverse matrix exists. To construct the adjoint matrix, we find the algebraic complements of the elements of this matrix. We have

According to the formula

transport matrix A*:

Then according to the formula

Finding the inverse matrix using the method of elementary transformations

In addition to the method of finding the inverse matrix, which follows from the formula (the adjoint matrix method), there is a method for finding the inverse matrix, called the method of elementary transformations.

Elementary matrix transformations

The following transformations are called elementary matrix transformations:

1) rearrangement of rows (columns);

2) multiplying a row (column) by a number other than zero;

3) adding to the elements of a row (column) the corresponding elements of another row (column), previously multiplied by a certain number.

To find the matrix A -1, we construct a rectangular matrix B = (A|E) of orders (n; 2n), assigning to matrix A on the right the identity matrix E through a dividing line:

Let's look at an example.

Using the method of elementary transformations, find A -1 if

Solution. We form matrix B:

Let us denote the rows of matrix B by α 1, α 2, α 3. Let us perform the following transformations on the rows of matrix B.

Matrix A -1 is called the inverse matrix with respect to matrix A if A*A -1 = E, where E is the identity matrix of the nth order. An inverse matrix can only exist for square matrices.

Purpose of the service. Using this service online you can find algebraic complements, transposed matrix A T, allied matrix and inverse matrix. The decision is carried out directly on the website (online) and is free. The calculation results are presented in a report in Word and Excel format (i.e., it is possible to check the solution). see design example.

Instructions. To obtain a solution, it is necessary to specify the dimension of the matrix. Next, fill out matrix A in the new dialog box.

Matrix dimension 2 3 4 5 6 7 8 9 10

See also Inverse matrix using the Jordano-Gauss method

Algorithm for finding the inverse matrix

  1. Finding the transposed matrix A T .
  2. Definition of algebraic complements. Replace each element of the matrix with its algebraic complement.
  3. Compiling an inverse matrix from algebraic additions: each element of the resulting matrix is ​​divided by the determinant of the original matrix. The resulting matrix is ​​the inverse of the original matrix.
Next algorithm for finding the inverse matrix similar to the previous one except for some steps: first the algebraic complements are calculated, and then the allied matrix C is determined.
  1. Determine whether the matrix is ​​square. If not, then there is no inverse matrix for it.
  2. Calculation of the determinant of the matrix A. If it is not equal to zero, we continue the solution, otherwise the inverse matrix does not exist.
  3. Definition of algebraic complements.
  4. Filling out the union (mutual, adjoint) matrix C .
  5. Compiling an inverse matrix from algebraic additions: each element of the adjoint matrix C is divided by the determinant of the original matrix. The resulting matrix is ​​the inverse of the original matrix.
  6. They do a check: they multiply the original and the resulting matrices. The result should be an identity matrix.

Example No. 1. Let's write the matrix in the form:


Algebraic additions.
A 1,1 = (-1) 1+1
-1 -2
5 4

∆ 1,1 = (-1 4-5 (-2)) = 6
A 1,2 = (-1) 1+2
2 -2
-2 4

∆ 1,2 = -(2 4-(-2 (-2))) = -4
A 1.3 = (-1) 1+3
2 -1
-2 5

∆ 1,3 = (2 5-(-2 (-1))) = 8
A 2,1 = (-1) 2+1
2 3
5 4

∆ 2,1 = -(2 4-5 3) = 7
A 2,2 = (-1) 2+2
-1 3
-2 4

∆ 2,2 = (-1 4-(-2 3)) = 2
A 2,3 = (-1) 2+3
-1 2
-2 5

∆ 2,3 = -(-1 5-(-2 2)) = 1
A 3.1 = (-1) 3+1
2 3
-1 -2

∆ 3,1 = (2 (-2)-(-1 3)) = -1
A 3.2 = (-1) 3+2
-1 3
2 -2

∆ 3,2 = -(-1 (-2)-2 3) = 4
A 3.3 = (-1) 3+3
-1 2
2 -1

∆ 3,3 = (-1 (-1)-2 2) = -3
Then inverse matrix can be written as:
A -1 = 1/10
6 -4 8
7 2 1
-1 4 -3

A -1 =
0,6 -0,4 0,8
0,7 0,2 0,1
-0,1 0,4 -0,3

Another algorithm for finding the inverse matrix

Let us present another scheme for finding the inverse matrix.
  1. Find the determinant of a given square matrix A.
  2. We find algebraic complements to all elements of the matrix A.
  3. We write algebraic additions of row elements to columns (transposition).
  4. We divide each element of the resulting matrix by the determinant of the matrix A.
As we see, the transposition operation can be applied both at the beginning, on the original matrix, and at the end, on the resulting algebraic additions.

A special case: The inverse of the identity matrix E is the identity matrix E.

The inverse matrix for a given matrix is ​​such a matrix, multiplying the original one by which gives the identity matrix: A mandatory and sufficient condition for the presence of an inverse matrix is ​​that the determinant of the original matrix is ​​not equal to zero (which in turn implies that the matrix must be square). If the determinant of a matrix is ​​equal to zero, then it is called singular and such a matrix does not have an inverse. In higher mathematics, inverse matrices are important and are used to solve a number of problems. For example, on finding the inverse matrix a matrix method for solving systems of equations was constructed. Our service site allows calculate inverse matrix online two methods: the Gauss-Jordan method and using the matrix of algebraic additions. The first one involves a large number of elementary transformations inside the matrix, the second one involves the calculation of the determinant and algebraic additions to all elements. To calculate the determinant of a matrix online, you can use our other service - Calculation of the determinant of a matrix online

.

Find the inverse matrix for the site

website allows you to find inverse matrix online fast and free. On the site, calculations are made using our service and the result is given with a detailed solution for finding inverse matrix. The server always gives only an accurate and correct answer. In tasks by definition inverse matrix online, it is necessary that the determinant matrices was nonzero, otherwise website will report the impossibility of finding the inverse matrix due to the fact that the determinant of the original matrix is ​​equal to zero. The task of finding inverse matrix found in many branches of mathematics, being one of the most basic concepts of algebra and a mathematical tool in applied problems. Independent definition of inverse matrix requires significant effort, a lot of time, calculations and great care to avoid typos or minor errors in calculations. Therefore our service finding the inverse matrix online will make your task much easier and will become an indispensable tool for solving mathematical problems. Even if you find the inverse matrix yourself, we recommend checking your solution on our server. Enter your original matrix at our Calculation of inverse matrix online and check your answer. Our system never makes mistakes and finds inverse matrix given dimension in mode online instantly! On the site website character entries are allowed in elements matrices, in this case inverse matrix online will be presented in general symbolic form.

This topic is one of the most hated among students. Worse, probably, are the qualifiers.

The trick is that the very concept of an inverse element (and I’m not just talking about matrices) refers us to the operation of multiplication. Even in the school curriculum, multiplication is considered a complex operation, and multiplication of matrices is generally a separate topic, to which I have an entire paragraph and video lesson dedicated.

Today we will not go into the details of matrix calculations. Let’s just remember: how matrices are designated, how they are multiplied, and what follows from this.

Review: Matrix Multiplication

First of all, let's agree on notation. A matrix $A$ of size $\left[ m\times n \right]$ is simply a table of numbers with exactly $m$ rows and $n$ columns:

\=\underbrace(\left[ \begin(matrix) ((a)_(11)) & ((a)_(12)) & ... & ((a)_(1n)) \\ (( a)_(21)) & ((a)_(22)) & ... & ((a)_(2n)) \\ ... & ... & ... & ... \\ ((a)_(m1)) & ((a)_(m2)) & ... & ((a)_(mn)) \\\end(matrix) \right])_(n)\]

To avoid accidentally mixing up rows and columns (believe me, in an exam you can confuse a one with a two, let alone some rows), just look at the picture:

Determining indices for matrix cells

What's happening? If you place the standard coordinate system $OXY$ in the upper left corner and direct the axes so that they cover the entire matrix, then each cell of this matrix can be uniquely associated with coordinates $\left(x;y \right)$ - this will be the row number and column number.

Why is the coordinate system placed in the upper left corner? Yes, because it is from there that we begin to read any texts. It's very easy to remember.

Why is the $x$ axis directed downwards and not to the right? Again, it's simple: take a standard coordinate system (the $x$ axis goes to the right, the $y$ axis goes up) and rotate it so that it covers the matrix. This is a 90 degree clockwise rotation - we see the result in the picture.

In general, we have figured out how to determine the indices of matrix elements. Now let's look at multiplication.

Definition. Matrices $A=\left[ m\times n \right]$ and $B=\left[ n\times k \right]$, when the number of columns in the first coincides with the number of rows in the second, are called consistent.

Exactly in that order. One can be confused and say that the matrices $A$ and $B$ form an ordered pair $\left(A;B \right)$: if they are consistent in this order, then it is not at all necessary that $B$ and $A$ those. the pair $\left(B;A \right)$ is also consistent.

Only matched matrices can be multiplied.

Definition. The product of matched matrices $A=\left[ m\times n \right]$ and $B=\left[ n\times k \right]$ is the new matrix $C=\left[ m\times k \right]$ , the elements of which $((c)_(ij))$ are calculated according to the formula:

\[((c)_(ij))=\sum\limits_(k=1)^(n)(((a)_(ik)))\cdot ((b)_(kj))\]

In other words: to get the element $((c)_(ij))$ of the matrix $C=A\cdot B$, you need to take the $i$-row of the first matrix, the $j$-th column of the second matrix, and then multiply in pairs elements from this row and column. Add up the results.

Yes, that’s such a harsh definition. Several facts immediately follow from it:

  1. Matrix multiplication, generally speaking, is non-commutative: $A\cdot B\ne B\cdot A$;
  2. However, multiplication is associative: $\left(A\cdot B \right)\cdot C=A\cdot \left(B\cdot C \right)$;
  3. And even distributively: $\left(A+B \right)\cdot C=A\cdot C+B\cdot C$;
  4. And once again distributively: $A\cdot \left(B+C \right)=A\cdot B+A\cdot C$.

The distributivity of multiplication had to be described separately for the left and right sum factor precisely because of the non-commutativity of the multiplication operation.

If it turns out that $A\cdot B=B\cdot A$, such matrices are called commutative.

Among all the matrices that are multiplied by something there, there are special ones - those that, when multiplied by any matrix $A$, again give $A$:

Definition. A matrix $E$ is called identity if $A\cdot E=A$ or $E\cdot A=A$. In the case of a square matrix $A$ we can write:

The identity matrix is ​​a frequent guest when solving matrix equations. And in general, a frequent guest in the world of matrices. :)

And because of this $E$, someone came up with all the nonsense that will be written next.

What is an inverse matrix

Since matrix multiplication is a very labor-intensive operation (you have to multiply a bunch of rows and columns), the concept of an inverse matrix also turns out to be not the most trivial. And requiring some explanation.

Key Definition

Well, it's time to know the truth.

Definition. A matrix $B$ is called the inverse of a matrix $A$ if

The inverse matrix is ​​denoted by $((A)^(-1))$ (not to be confused with the degree!), so the definition can be rewritten as follows:

It would seem that everything is extremely simple and clear. But when analyzing this definition, several questions immediately arise:

  1. Does an inverse matrix always exist? And if not always, then how to determine: when it exists and when it does not?
  2. And who said that there is exactly one such matrix? What if for some initial matrix $A$ there is a whole crowd of inverses?
  3. What do all these “reverses” look like? And how, exactly, should we count them?

As for calculation algorithms, we will talk about this a little later. But we will answer the remaining questions right now. Let us formulate them in the form of separate statements-lemmas.

Basic properties

Let's start with how the matrix $A$ should, in principle, look in order for $((A)^(-1))$ to exist for it. Now we will make sure that both of these matrices must be square, and of the same size: $\left[ n\times n \right]$.

Lemma 1. Given a matrix $A$ and its inverse $((A)^(-1))$. Then both of these matrices are square, and of the same order $n$.

Proof. It's simple. Let the matrix $A=\left[ m\times n \right]$, $((A)^(-1))=\left[ a\times b \right]$. Since the product $A\cdot ((A)^(-1))=E$ exists by definition, the matrices $A$ and $((A)^(-1))$ are consistent in the order shown:

\[\begin(align) & \left[ m\times n \right]\cdot \left[ a\times b \right]=\left[ m\times b \right] \\ & n=a \end( align)\]

This is a direct consequence of the matrix multiplication algorithm: the coefficients $n$ and $a$ are “transit” and must be equal.

At the same time, the inverse multiplication is also defined: $((A)^(-1))\cdot A=E$, therefore the matrices $((A)^(-1))$ and $A$ are also consistent in the specified order:

\[\begin(align) & \left[ a\times b \right]\cdot \left[ m\times n \right]=\left[ a\times n \right] \\ & b=m \end( align)\]

Thus, without loss of generality, we can assume that $A=\left[ m\times n \right]$, $((A)^(-1))=\left[ n\times m \right]$. However, according to the definition of $A\cdot ((A)^(-1))=((A)^(-1))\cdot A$, therefore the sizes of the matrices strictly coincide:

\[\begin(align) & \left[ m\times n \right]=\left[ n\times m \right] \\ & m=n \end(align)\]

So it turns out that all three matrices - $A$, $((A)^(-1))$ and $E$ - are square matrices of size $\left[ n\times n \right]$. The lemma is proven.

Well, that's already good. We see that only square matrices are invertible. Now let's make sure that the inverse matrix is ​​always the same.

Lemma 2. Given a matrix $A$ and its inverse $((A)^(-1))$. Then this inverse matrix is ​​the only one.

Proof. Let's go by contradiction: let the matrix $A$ have at least two inverses - $B$ and $C$. Then, according to definition, the following equalities are true:

\[\begin(align) & A\cdot B=B\cdot A=E; \\ & A\cdot C=C\cdot A=E. \\ \end(align)\]

From Lemma 1 we conclude that all four matrices - $A$, $B$, $C$ and $E$ - are squares of the same order: $\left[ n\times n \right]$. Therefore, the product is defined:

Since matrix multiplication is associative (but not commutative!), we can write:

\[\begin(align) & B\cdot A\cdot C=\left(B\cdot A \right)\cdot C=E\cdot C=C; \\ & B\cdot A\cdot C=B\cdot \left(A\cdot C \right)=B\cdot E=B; \\ & B\cdot A\cdot C=C=B\Rightarrow B=C. \\ \end(align)\]

We got the only possible option: two copies of the inverse matrix are equal. The lemma is proven.

The above arguments repeat almost verbatim the proof of the uniqueness of the inverse element for all real numbers $b\ne 0$. The only significant addition is taking into account the dimension of matrices.

However, we still do not know anything about whether every square matrix is ​​invertible. Here the determinant comes to our aid - this is a key characteristic for all square matrices.

Lemma 3. Given a matrix $A$. If its inverse matrix $((A)^(-1))$ exists, then the determinant of the original matrix is ​​nonzero:

\[\left| A\right|\ne 0\]

Proof. We already know that $A$ and $((A)^(-1))$ are square matrices of size $\left[ n\times n \right]$. Therefore, for each of them we can calculate the determinant: $\left| A\right|$ and $\left| ((A)^(-1)) \right|$. However, the determinant of a product is equal to the product of the determinants:

\[\left| A\cdot B \right|=\left| A \right|\cdot \left| B \right|\Rightarrow \left| A\cdot ((A)^(-1)) \right|=\left| A \right|\cdot \left| ((A)^(-1)) \right|\]

But according to the definition, $A\cdot ((A)^(-1))=E$, and the determinant of $E$ is always equal to 1, so

\[\begin(align) & A\cdot ((A)^(-1))=E; \\ & \left| A\cdot ((A)^(-1)) \right|=\left| E\right|; \\ & \left| A \right|\cdot \left| ((A)^(-1)) \right|=1. \\ \end(align)\]

The product of two numbers is equal to one only if each of these numbers is non-zero:

\[\left| A \right|\ne 0;\quad \left| ((A)^(-1)) \right|\ne 0.\]

So it turns out that $\left| A \right|\ne 0$. The lemma is proven.

In fact, this requirement is quite logical. Now we will analyze the algorithm for finding the inverse matrix - and it will become completely clear why, with a zero determinant, no inverse matrix in principle can exist.

But first, let’s formulate an “auxiliary” definition:

Definition. A singular matrix is ​​a square matrix of size $\left[ n\times n \right]$ whose determinant is zero.

Thus, we can claim that every invertible matrix is ​​non-singular.

How to find the inverse of a matrix

Now we will consider a universal algorithm for finding inverse matrices. In general, there are two generally accepted algorithms, and we will also consider the second one today.

The one that will be discussed now is very effective for matrices of size $\left[ 2\times 2 \right]$ and - partially - size $\left[ 3\times 3 \right]$. But starting from the size $\left[ 4\times 4 \right]$ it is better not to use it. Why - now you will understand everything yourself.

Algebraic additions

Get ready. Now there will be pain. No, don’t worry: a beautiful nurse in a skirt, stockings with lace will not come to you and give you an injection in the buttock. Everything is much more prosaic: algebraic additions and Her Majesty the “Union Matrix” come to you.

Let's start with the main thing. Let there be a square matrix of size $A=\left[ n\times n \right]$, whose elements are called $((a)_(ij))$. Then for each such element we can define an algebraic complement:

Definition. Algebraic complement $((A)_(ij))$ to the element $((a)_(ij))$ located in the $i$th row and $j$th column of the matrix $A=\left[ n \times n \right]$ is a construction of the form

\[((A)_(ij))=((\left(-1 \right))^(i+j))\cdot M_(ij)^(*)\]

Where $M_(ij)^(*)$ is the determinant of the matrix obtained from the original $A$ by deleting the same $i$th row and $j$th column.

Again. The algebraic complement to a matrix element with coordinates $\left(i;j \right)$ is denoted as $((A)_(ij))$ and is calculated according to the scheme:

  1. First, we delete the $i$-row and $j$-th column from the original matrix. We obtain a new square matrix, and we denote its determinant as $M_(ij)^(*)$.
  2. Then we multiply this determinant by $((\left(-1 \right))^(i+j))$ - at first this expression may seem mind-blowing, but in essence we are simply figuring out the sign in front of $M_(ij)^(*) $.
  3. We count and get a specific number. Those. the algebraic addition is precisely a number, and not some new matrix, etc.

The matrix $M_(ij)^(*)$ itself is called an additional minor to the element $((a)_(ij))$. And in this sense, the above definition of an algebraic complement is a special case of a more complex definition - what we looked at in the lesson about the determinant.

Important note. Actually, in “adult” mathematics, algebraic additions are defined as follows:

  1. We take $k$ rows and $k$ columns in a square matrix. At their intersection we get a matrix of size $\left[ k\times k \right]$ - its determinant is called a minor of order $k$ and is denoted $((M)_(k))$.
  2. Then we cross out these “selected” $k$ rows and $k$ columns. Once again you get a square matrix - its determinant is called an additional minor and is denoted $M_(k)^(*)$.
  3. Multiply $M_(k)^(*)$ by $((\left(-1 \right))^(t))$, where $t$ is (attention now!) the sum of the numbers of all selected rows and columns . This will be the algebraic addition.

Look at the third step: there is actually a sum of $2k$ terms! Another thing is that for $k=1$ we will get only 2 terms - these will be the same $i+j$ - the “coordinates” of the element $((a)_(ij))$ for which we are looking for an algebraic complement.

So today we're using a slightly simplified definition. But as we will see later, it will be more than enough. The following thing is much more important:

Definition. The allied matrix $S$ to the square matrix $A=\left[ n\times n \right]$ is a new matrix of size $\left[ n\times n \right]$, which is obtained from $A$ by replacing $(( a)_(ij))$ by algebraic additions $((A)_(ij))$:

\\Rightarrow S=\left[ \begin(matrix) ((A)_(11)) & ((A)_(12)) & ... & ((A)_(1n)) \\ (( A)_(21)) & ((A)_(22)) & ... & ((A)_(2n)) \\ ... & ... & ... & ... \\ ((A)_(n1)) & ((A)_(n2)) & ... & ((A)_(nn)) \\\end(matrix) \right]\]

The first thought that arises at the moment of realizing this definition is “how much will have to be counted!” Relax: you will have to count, but not that much. :)

Well, all this is very nice, but why is it necessary? But why.

Main theorem

Let's go back a little. Remember, in Lemma 3 it was stated that the invertible matrix $A$ is always non-singular (that is, its determinant is non-zero: $\left| A \right|\ne 0$).

So, the opposite is also true: if the matrix $A$ is not singular, then it is always invertible. And there is even a search scheme for $((A)^(-1))$. Check it out:

Inverse matrix theorem. Let a square matrix $A=\left[ n\times n \right]$ be given, and its determinant is nonzero: $\left| A \right|\ne 0$. Then the inverse matrix $((A)^(-1))$ exists and is calculated by the formula:

\[((A)^(-1))=\frac(1)(\left| A \right|)\cdot ((S)^(T))\]

And now - everything is the same, but in legible handwriting. To find the inverse matrix, you need:

  1. Calculate the determinant $\left| A \right|$ and make sure it is non-zero.
  2. Construct the union matrix $S$, i.e. count 100500 algebraic additions $((A)_(ij))$ and place them in place $((a)_(ij))$.
  3. Transpose this matrix $S$, and then multiply it by some number $q=(1)/(\left| A \right|)\;$.

That's all! The inverse matrix $((A)^(-1))$ has been found. Let's look at examples:

\[\left[ \begin(matrix) 3 & 1 \\ 5 & 2 \\\end(matrix) \right]\]

Solution. Let's check the reversibility. Let's calculate the determinant:

\[\left| A\right|=\left| \begin(matrix) 3 & 1 \\ 5 & 2 \\\end(matrix) \right|=3\cdot 2-1\cdot 5=6-5=1\]

The determinant is different from zero. This means the matrix is ​​invertible. Let's create a union matrix:

Let's calculate the algebraic additions:

\[\begin(align) & ((A)_(11))=((\left(-1 \right))^(1+1))\cdot \left| 2 \right|=2; \\ & ((A)_(12))=((\left(-1 \right))^(1+2))\cdot \left| 5 \right|=-5; \\ & ((A)_(21))=((\left(-1 \right))^(2+1))\cdot \left| 1 \right|=-1; \\ & ((A)_(22))=((\left(-1 \right))^(2+2))\cdot \left| 3\right|=3. \\ \end(align)\]

Please note: the determinants |2|, |5|, |1| and |3| are determinants of matrices of size $\left[ 1\times 1 \right]$, and not modules. Those. If there were negative numbers in the determinants, there is no need to remove the “minus”.

In total, our union matrix looks like this:

\[((A)^(-1))=\frac(1)(\left| A \right|)\cdot ((S)^(T))=\frac(1)(1)\cdot ( (\left[ \begin(array)(*(35)(r)) 2 & -5 \\ -1 & 3 \\\end(array) \right])^(T))=\left[ \begin (array)(*(35)(r)) 2 & -1 \\ -5 & 3 \\\end(array) \right]\]

OK it's all over Now. The problem is solved.

Answer. $\left[ \begin(array)(*(35)(r)) 2 & -1 \\ -5 & 3 \\\end(array) \right]$

Task. Find the inverse matrix:

\[\left[ \begin(array)(*(35)(r)) 1 & -1 & 2 \\ 0 & 2 & -1 \\ 1 & 0 & 1 \\\end(array) \right] \]

Solution. We calculate the determinant again:

\[\begin(align) & \left| \begin(array)(*(35)(r)) 1 & -1 & 2 \\ 0 & 2 & -1 \\ 1 & 0 & 1 \\\end(array) \right|=\begin(matrix ) \left(1\cdot 2\cdot 1+\left(-1 \right)\cdot \left(-1 \right)\cdot 1+2\cdot 0\cdot 0 \right)- \\ -\left (2\cdot 2\cdot 1+\left(-1 \right)\cdot 0\cdot 1+1\cdot \left(-1 \right)\cdot 0 \right) \\\end(matrix)= \ \ & =\left(2+1+0 \right)-\left(4+0+0 \right)=-1\ne 0. \\ \end(align)\]

The determinant is nonzero—the matrix is ​​invertible. But now it’s going to be really tough: we need to count as many as 9 (nine, motherfucker!) algebraic additions. And each of them will contain the determinant $\left[ 2\times 2 \right]$. Flew:

\[\begin(matrix) ((A)_(11))=((\left(-1 \right))^(1+1))\cdot \left| \begin(matrix) 2 & -1 \\ 0 & 1 \\\end(matrix) \right|=2; \\ ((A)_(12))=((\left(-1 \right))^(1+2))\cdot \left| \begin(matrix) 0 & -1 \\ 1 & 1 \\\end(matrix) \right|=-1; \\ ((A)_(13))=((\left(-1 \right))^(1+3))\cdot \left| \begin(matrix) 0 & 2 \\ 1 & 0 \\\end(matrix) \right|=-2; \\ ... \\ ((A)_(33))=((\left(-1 \right))^(3+3))\cdot \left| \begin(matrix) 1 & -1 \\ 0 & 2 \\\end(matrix) \right|=2; \\ \end(matrix)\]

In short, the union matrix will look like this:

Therefore, the inverse matrix will be:

\[((A)^(-1))=\frac(1)(-1)\cdot \left[ \begin(matrix) 2 & -1 & -2 \\ 1 & -1 & -1 \\ -3 & 1 & 2 \\\end(matrix) \right]=\left[ \begin(array)(*(35)(r))-2 & -1 & 3 \\ 1 & 1 & -1 \ \2 & 1 & -2 \\\end(array) \right]\]

That's it. Here is the answer.

Answer. $\left[ \begin(array)(*(35)(r)) -2 & -1 & 3 \\ 1 & 1 & -1 \\ 2 & 1 & -2 \\\end(array) \right ]$

As you can see, at the end of each example we performed a check. In this regard, an important note:

Don't be lazy to check. Multiply the original matrix by the found inverse matrix - you should get $E$.

Performing this check is much easier and faster than looking for an error in further calculations when, for example, you are solving a matrix equation.

Alternative way

As I said, the inverse matrix theorem works great for sizes $\left[ 2\times 2 \right]$ and $\left[ 3\times 3 \right]$ (in the latter case, it’s not so “great” "), but for larger matrices the sadness begins.

But don’t worry: there is an alternative algorithm with which you can calmly find the inverse even for the matrix $\left[ 10\times 10 \right]$. But, as often happens, to consider this algorithm we need a little theoretical introduction.

Elementary transformations

Among all possible matrix transformations, there are several special ones - they are called elementary. There are exactly three such transformations:

  1. Multiplication. You can take the $i$th row (column) and multiply it by any number $k\ne 0$;
  2. Addition. Add to the $i$-th row (column) any other $j$-th row (column) multiplied by any number $k\ne 0$ (you can, of course, do $k=0$, but what's the point? ? Nothing will change).
  3. Rearrangement. Take the $i$th and $j$th rows (columns) and swap places.

Why these transformations are called elementary (for large matrices they do not look so elementary) and why there are only three of them - these questions are beyond the scope of today's lesson. Therefore, we will not go into details.

Another thing is important: we have to perform all these perversions on the adjoint matrix. Yes, yes: you heard right. Now there will be one more definition - the last one in today's lesson.

Adjoint matrix

Surely at school you solved systems of equations using the addition method. Well, there, subtract another from one line, multiply some line by a number - that’s all.

So: now everything will be the same, but in an “adult” way. Ready?

Definition. Let a matrix $A=\left[ n\times n \right]$ and an identity matrix $E$ of the same size $n$ be given. Then the adjoint matrix $\left[ A\left| E\right. \right]$ is a new matrix of size $\left[ n\times 2n \right]$ that looks like this:

\[\left[ A\left| E\right. \right]=\left[ \begin(array)(rrrr|rrrr)((a)_(11)) & ((a)_(12)) & ... & ((a)_(1n)) & 1 & 0 & ... & 0 \\((a)_(21)) & ((a)_(22)) & ... & ((a)_(2n)) & 0 & 1 & ... & 0 \\... & ... & ... & ... & ... & ... & ... & ... \\((a)_(n1)) & ((a)_(n2)) & ... & ((a)_(nn)) & 0 & 0 & ... & 1 \\\end(array) \right]\]

In short, we take the matrix $A$, on the right we assign to it the identity matrix $E$ of the required size, we separate them with a vertical bar for beauty - here you have the adjoint. :)

What's the catch? Here's what:

Theorem. Let the matrix $A$ be invertible. Consider the adjoint matrix $\left[ A\left| E\right. \right]$. If using elementary string conversions bring it to the form $\left[ E\left| B\right. \right]$, i.e. by multiplying, subtracting and rearranging rows to obtain from $A$ the matrix $E$ on the right, then the matrix $B$ obtained on the left is the inverse of $A$:

\[\left[ A\left| E\right. \right]\to \left[ E\left| B\right. \right]\Rightarrow B=((A)^(-1))\]

It's that simple! In short, the algorithm for finding the inverse matrix looks like this:

  1. Write the adjoint matrix $\left[ A\left| E\right. \right]$;
  2. Perform elementary string conversions until $E$ appears instead of $A$;
  3. Of course, something will also appear on the left - a certain matrix $B$. This will be the opposite;
  4. PROFIT!:)

Of course, this is much easier said than done. So let's look at a couple of examples: for sizes $\left[ 3\times 3 \right]$ and $\left[ 4\times 4 \right]$.

Task. Find the inverse matrix:

\[\left[ \begin(array)(*(35)(r)) 1 & 5 & 1 \\ 3 & 2 & 1 \\ 6 & -2 & 1 \\\end(array) \right]\ ]

Solution. We create the adjoint matrix:

\[\left[ \begin(array)(rrr|rrr) 1 & 5 & 1 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 & 1 & 0 \\ 6 & -2 & 1 & 0 & 0 & 1 \\\end(array) \right]\]

Since the last column of the original matrix is ​​filled with ones, subtract the first row from the rest:

\[\begin(align) & \left[ \begin(array)(rrr|rrr) 1 & 5 & 1 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 & 1 & 0 \\ 6 & - 2 & 1 & 0 & 0 & 1 \\\end(array) \right]\begin(matrix) \downarrow \\ -1 \\ -1 \\\end(matrix)\to \\ & \to \left [ \begin(array)(rrr|rrr) 1 & 5 & 1 & 1 & 0 & 0 \\ 2 & -3 & 0 & -1 & 1 & 0 \\ 5 & -7 & 0 & -1 & 0 & 1 \\\end(array) \right] \\ \end(align)\]

There are no more units, except for the first line. But we don’t touch it, otherwise the newly removed units will begin to “multiply” in the third column.

But we can subtract the second line twice from the last - we get one in the lower left corner:

\[\begin(align) & \left[ \begin(array)(rrr|rrr) 1 & 5 & 1 & 1 & 0 & 0 \\ 2 & -3 & 0 & -1 & 1 & 0 \\ 5 & -7 & 0 & -1 & 0 & 1 \\\end(array) \right]\begin(matrix) \ \\ \downarrow \\ -2 \\\end(matrix)\to \\ & \left [ \begin(array)(rrr|rrr) 1 & 5 & 1 & 1 & 0 & 0 \\ 2 & -3 & 0 & -1 & 1 & 0 \\ 1 & -1 & 0 & 1 & -2 & 1 \\\end(array) \right] \\ \end(align)\]

Now we can subtract the last row from the first and twice from the second - this way we “zero” the first column:

\[\begin(align) & \left[ \begin(array)(rrr|rrr) 1 & 5 & 1 & 1 & 0 & 0 \\ 2 & -3 & 0 & -1 & 1 & 0 \\ 1 & -1 & 0 & 1 & -2 & 1 \\\end(array) \right]\begin(matrix) -1 \\ -2 \\ \uparrow \\\end(matrix)\to \\ & \ to \left[ \begin(array)(rrr|rrr) 0 & 6 & 1 & 0 & 2 & -1 \\ 0 & -1 & 0 & -3 & 5 & -2 \\ 1 & -1 & 0 & 1 & -2 & 1 \\\end(array) \right] \\ \end(align)\]

Multiply the second line by −1, and then subtract it 6 times from the first and add 1 time to the last:

\[\begin(align) & \left[ \begin(array)(rrr|rrr) 0 & 6 & 1 & 0 & 2 & -1 \\ 0 & -1 & 0 & -3 & 5 & -2 \ \ 1 & -1 & 0 & 1 & -2 & 1 \\\end(array) \right]\begin(matrix) \ \\ \left| \cdot \left(-1 \right) \right. \\ \ \\\end(matrix)\to \\ & \to \left[ \begin(array)(rrr|rrr) 0 & 6 & 1 & 0 & 2 & -1 \\ 0 & 1 & 0 & 3 & -5 & 2 \\ 1 & -1 & 0 & 1 & -2 & 1 \\\end(array) \right]\begin(matrix) -6 \\ \updownarrow \\ +1 \\\end (matrix)\to \\ & \to \left[ \begin(array)(rrr|rrr) 0 & 0 & 1 & -18 & 32 & -13 \\ 0 & 1 & 0 & 3 & -5 & 2 \\ 1 & 0 & 0 & 4 & -7 & 3 \\\end(array) \right] \\ \end(align)\]

All that remains is to swap lines 1 and 3:

\[\left[ \begin(array)(rrr|rrr) 1 & 0 & 0 & 4 & -7 & 3 \\ 0 & 1 & 0 & 3 & -5 & 2 \\ 0 & 0 & 1 & - 18 & 32 & -13 \\\end(array) \right]\]

Ready! On the right is the required inverse matrix.

Answer. $\left[ \begin(array)(*(35)(r))4 & -7 & 3 \\ 3 & -5 & 2 \\ -18 & 32 & -13 \\\end(array) \right ]$

Task. Find the inverse matrix:

\[\left[ \begin(matrix) 1 & 4 & 2 & 3 \\ 1 & -2 & 1 & -2 \\ 1 & -1 & 1 & 1 \\ 0 & -10 & -2 & -5 \\\end(matrix) \right]\]

Solution. We compose the adjoint again:

\[\left[ \begin(array)(rrrr|rrrr) 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \\ 1 & -2 & 1 & -2 & 0 & 1 & 0 & 0 \ \ 1 & -1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & -10 & -2 & -5 & 0 & 0 & 0 & 1 \\\end(array) \right]\]

Let's cry a little, be sad about how much we have to count now... and start counting. First, let’s “zero out” the first column by subtracting row 1 from rows 2 and 3:

\[\begin(align) & \left[ \begin(array)(rrrr|rrrr) 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \\ 1 & -2 & 1 & -2 & 0 & 1 & 0 & 0 \\ 1 & -1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & -10 & -2 & -5 & 0 & 0 & 0 & 1 \\\end(array) \right]\begin(matrix) \downarrow \\ -1 \\ -1 \\ \ \\\end(matrix)\to \\ & \to \left[ \begin(array)(rrrr|rrrr) 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \\ 0 & -6 & -1 & -5 & -1 & 1 & 0 & 0 \\ 0 & -5 & -1 & -2 & -1 & 0 & 1 & 0 \\ 0 & -10 & -2 & -5 & 0 & 0 & 0 & 1 \\\end(array) \right] \\ \end(align)\]

We see too many “cons” in lines 2-4. Multiply all three rows by −1, and then burn out the third column by subtracting row 3 from the rest:

\[\begin(align) & \left[ \begin(array)(rrrr|rrrr) 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \\ 0 & -6 & -1 & -5 & - 1 & 1 & 0 & 0 \\ 0 & -5 & -1 & -2 & -1 & 0 & 1 & 0 \\ 0 & -10 & -2 & -5 & 0 & 0 & 0 & 1 \\ \end(array) \right]\begin(matrix) \ \\ \left| \cdot \left(-1 \right) \right. \\ \left| \cdot \left(-1 \right) \right. \\ \left| \cdot \left(-1 \right) \right. \\\end(matrix)\to \\ & \to \left[ \begin(array)(rrrr|rrrr) 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \\ 0 & 6 & 1 & 5 & ​​1 & -1 & 0 & 0 \\ 0 & 5 & 1 & 2 & 1 & 0 & -1 & 0 \\ 0 & 10 & 2 & 5 & 0 & 0 & 0 & -1 \\\end (array) \right]\begin(matrix) -2 \\ -1 \\ \updownarrow \\ -2 \\\end(matrix)\to \\ & \to \left[ \begin(array)(rrrr| rrrr) 1 & -6 & 0 & -1 & -1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 3 & 0 & -1 & 1 & 0 \\ 0 & 5 & 1 & 2 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \\\end(array) \right] \\ \end(align)\]

Now is the time to “fry” the last column of the original matrix: subtract row 4 from the rest:

\[\begin(align) & \left[ \begin(array)(rrrr|rrrr) 1 & -6 & 0 & -1 & -1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 3 & 0 & -1 & 1 & 0 \\ 0 & 5 & 1 & 2 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \\\end(array ) \right]\begin(matrix) +1 \\ -3 \\ -2 \\ \uparrow \\\end(matrix)\to \\ & \to \left[ \begin(array)(rrrr|rrrr) 1 & -6 & 0 & 0 & -3 & 0 & 4 & -1 \\ 0 & 1 & 0 & 0 & 6 & -1 & -5 & 3 \\ 0 & 5 & 1 & 0 & 5 & 0 & -5 & 2 \\ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \\\end(array) \right] \\ \end(align)\]

Final throw: “burn out” the second column by subtracting line 2 from lines 1 and 3:

\[\begin(align) & \left[ \begin(array)(rrrr|rrrr) 1 & -6 & 0 & 0 & -3 & 0 & 4 & -1 \\ 0 & 1 & 0 & 0 & 6 & -1 & -5 & 3 \\ 0 & 5 & 1 & 0 & 5 & 0 & -5 & 2 \\ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \\\end( array) \right]\begin(matrix) 6 \\ \updownarrow \\ -5 \\ \ \\\end(matrix)\to \\ & \to \left[ \begin(array)(rrrr|rrrr) 1 & 0 & 0 & 0 & 33 & -6 & -26 & -17 \\ 0 & 1 & 0 & 0 & 6 & -1 & -5 & 3 \\ 0 & 0 & 1 & 0 & -25 & 5 & 20 & -13 \\ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \\\end(array) \right] \\ \end(align)\]

And again the identity matrix is ​​on the left, which means the inverse is on the right. :)

Answer. $\left[ \begin(matrix) 33 & -6 & -26 & 17 \\ 6 & -1 & -5 & 3 \\ -25 & 5 & 20 & -13 \\ -2 & 0 & 2 & - 1 \\\end(matrix) \right]$

Let there be a square matrix of nth order

Matrix A -1 is called inverse matrix in relation to matrix A, if A*A -1 = E, where E is the identity matrix of the nth order.

Identity matrix- such a square matrix in which all the elements along the main diagonal, passing from the upper left corner to the lower right corner, are ones, and the rest are zeros, for example:

inverse matrix may exist only for square matrices those. for those matrices in which the number of rows and columns coincide.

Theorem for the existence condition of an inverse matrix

In order for a matrix to have an inverse matrix, it is necessary and sufficient that it be non-singular.

The matrix A = (A1, A2,...A n) is called non-degenerate, if the column vectors are linearly independent. The number of linearly independent column vectors of a matrix is ​​called the rank of the matrix. Therefore, we can say that in order for an inverse matrix to exist, it is necessary and sufficient that the rank of the matrix is ​​equal to its dimension, i.e. r = n.

Algorithm for finding the inverse matrix

  1. Write matrix A into the table for solving systems of equations using the Gaussian method and assign matrix E to it on the right (in place of the right-hand sides of the equations).
  2. Using Jordan transformations, reduce matrix A to a matrix consisting of unit columns; in this case, it is necessary to simultaneously transform the matrix E.
  3. If necessary, rearrange the rows (equations) of the last table so that under the matrix A of the original table you get the identity matrix E.
  4. Write down the inverse matrix A -1, which is located in the last table under the matrix E of the original table.
Example 1

For matrix A, find the inverse matrix A -1

Solution: We write matrix A and assign the identity matrix E to the right. Using Jordan transformations, we reduce matrix A to the identity matrix E. The calculations are given in Table 31.1.

Let's check the correctness of the calculations by multiplying the original matrix A and the inverse matrix A -1.

As a result of matrix multiplication, the identity matrix was obtained. Therefore, the calculations were performed correctly.

Answer:

Solving matrix equations

Matrix equations can look like:

AX = B, HA = B, AXB = C,

where A, B, C are the specified matrices, X is the desired matrix.

Matrix equations are solved by multiplying the equation by inverse matrices.

For example, to find the matrix from the equation, you need to multiply this equation by on the left.

Therefore, to find a solution to the equation, you need to find the inverse matrix and multiply it by the matrix on the right side of the equation.

Other equations are solved similarly.

Example 2

Solve the equation AX = B if

Solution: Since the inverse matrix is ​​equal to (see example 1)

Matrix method in economic analysis

Along with others, they are also used matrix methods. These methods are based on linear and vector-matrix algebra. Such methods are used for the purposes of analyzing complex and multidimensional economic phenomena. Most often, these methods are used when it is necessary to make a comparative assessment of the functioning of organizations and their structural divisions.

In the process of applying matrix analysis methods, several stages can be distinguished.

At the first stage a system of economic indicators is being formed and on its basis a matrix of initial data is compiled, which is a table in which system numbers are shown in its individual rows (i = 1,2,....,n), and in vertical columns - numbers of indicators (j = 1,2,....,m).

At the second stage For each vertical column, the largest of the available indicator values ​​is identified, which is taken as one.

After this, all amounts reflected in this column are divided by the largest value and a matrix of standardized coefficients is formed.

At the third stage all components of the matrix are squared. If they have different significance, then each matrix indicator is assigned a certain weight coefficient k. The value of the latter is determined by expert opinion.

On the last one, fourth stage found rating values R j are grouped in order of their increase or decrease.

The matrix methods outlined should be used, for example, in a comparative analysis of various investment projects, as well as in assessing other economic indicators of the activities of organizations.