home · Appliances · Solving complete quadratic equations using a discriminant. Finding the discriminant, formula, comparison with zero

Solving complete quadratic equations using a discriminant. Finding the discriminant, formula, comparison with zero

Quadratic equation problems are studied both in the school curriculum and in universities. They mean equations of the form a*x^2 + b*x + c = 0, where x- variable, a, b, c – constants; a<>0 . The task is to find the roots of the equation.

Geometric meaning of quadratic equation

The graph of a function that is represented by a quadratic equation is a parabola. The solutions (roots) of a quadratic equation are the points of intersection of the parabola with the abscissa (x) axis. It follows that there are three possible cases:
1) the parabola has no points of intersection with the abscissa axis. This means that it is in the upper plane with branches up or the bottom with branches down. In such cases, the quadratic equation has no real roots (it has two complex roots).

2) the parabola has one point of intersection with the Ox axis. Such a point is called the vertex of the parabola, and the quadratic equation at it acquires its minimum or maximum value. In this case, the quadratic equation has one real root (or two identical roots).

3) The last case is more interesting in practice - there are two points of intersection of the parabola with the abscissa axis. This means that there are two real roots of the equation.

Based on the analysis of the coefficients of the powers of the variables, interesting conclusions can be drawn about the placement of the parabola.

1) If the coefficient a is greater than zero, then the parabola’s branches are directed upward; if it is negative, the parabola’s branches are directed downward.

2) If the coefficient b is greater than zero, then the vertex of the parabola lies in the left half-plane, if it takes a negative value, then in the right.

Derivation of the formula for solving a quadratic equation

Let's transfer the constant from the quadratic equation

for the equal sign, we get the expression

Multiply both sides by 4a

To get a complete square on the left, add b^2 on both sides and carry out the transformation

From here we find

Formula for the discriminant and roots of a quadratic equation

The discriminant is the value of the radical expression. If it is positive, then the equation has two real roots, calculated by the formula When the discriminant is zero, the quadratic equation has one solution (two coinciding roots), which can be easily obtained from the above formula for D=0. When the discriminant is negative, the equation has no real roots. However, solutions to the quadratic equation are found in the complex plane, and their value is calculated using the formula

Vieta's theorem

Let's consider two roots of a quadratic equation and construct a quadratic equation on their basis. Vieta's theorem itself easily follows from the notation: if we have a quadratic equation of the form then the sum of its roots is equal to the coefficient p taken with the opposite sign, and the product of the roots of the equation is equal to the free term q. The formulaic representation of the above will look like If in a classical equation the constant a is nonzero, then you need to divide the entire equation by it, and then apply Vieta’s theorem.

Factoring quadratic equation schedule

Let the task be set: factor a quadratic equation. To do this, we first solve the equation (find the roots). Next, we substitute the found roots into the expansion formula for the quadratic equation. This will solve the problem.

Quadratic equation problems

Task 1. Find the roots of a quadratic equation

x^2-26x+120=0 .

Solution: Write down the coefficients and substitute them into the discriminant formula

The root of this value is 14, it is easy to find with a calculator, or remember with frequent use, however, for convenience, at the end of the article I will give you a list of squares of numbers that can often be encountered in such problems.
We substitute the found value into the root formula

and we get

Task 2. Solve the equation

2x 2 +x-3=0.

Solution: We have a complete quadratic equation, write out the coefficients and find the discriminant


Using known formulas we find the roots of the quadratic equation

Task 3. Solve the equation

9x 2 -12x+4=0.

Solution: We have a complete quadratic equation. Determining the discriminant

We got a case where the roots coincide. Find the values ​​of the roots using the formula

Task 4. Solve the equation

x^2+x-6=0 .

Solution: In cases where there are small coefficients for x, it is advisable to apply Vieta’s theorem. By its condition we obtain two equations

From the second condition we find that the product must be equal to -6. This means that one of the roots is negative. We have the following possible pair of solutions (-3;2), (3;-2) . Taking into account the first condition, we reject the second pair of solutions.
The roots of the equation are equal

Problem 5. Find the lengths of the sides of a rectangle if its perimeter is 18 cm and its area is 77 cm 2.

Solution: Half the perimeter of a rectangle is equal to the sum of its adjacent sides. Let's denote x as the larger side, then 18-x is its smaller side. The area of ​​the rectangle is equal to the product of these lengths:
x(18-x)=77;
or
x 2 -18x+77=0.
Let's find the discriminant of the equation

Calculating the roots of the equation

If x=11, That 18's=7 , the opposite is also true (if x=7, then 21's=9).

Problem 6. Factor the quadratic equation 10x 2 -11x+3=0.

Solution: Let's calculate the roots of the equation, to do this we find the discriminant

We substitute the found value into the root formula and calculate

We apply the formula for decomposing a quadratic equation by roots

Opening the brackets we obtain an identity.

Quadratic equation with parameter

Example 1. At what parameter values A , does the equation (a-3)x 2 + (3-a)x-1/4=0 have one root?

Solution: By direct substitution of the value a=3 we see that it has no solution. Next, we will use the fact that with a zero discriminant the equation has one root of multiplicity 2. Let's write out the discriminant

Let's simplify it and equate it to zero

We have obtained a quadratic equation with respect to the parameter a, the solution of which can be easily obtained using Vieta’s theorem. The sum of the roots is 7, and their product is 12. By simple search we establish that the numbers 3,4 will be the roots of the equation. Since we already rejected the solution a=3 at the beginning of the calculations, the only correct one will be - a=4. Thus, for a=4 the equation has one root.

Example 2. At what parameter values A , the equation a(a+3)x^2+(2a+6)x-3a-9=0 has more than one root?

Solution: Let's first consider the singular points, they will be the values ​​a=0 and a=-3. When a=0, the equation will be simplified to the form 6x-9=0; x=3/2 and there will be one root. For a= -3 we obtain the identity 0=0.
Let's calculate the discriminant

and find the value of a at which it is positive

From the first condition we get a>3. For the second, we find the discriminant and roots of the equation


Let us determine the intervals where the function takes positive values. By substituting the point a=0 we get 3>0 . So, outside the interval (-3;1/3) the function is negative. Don't forget the point a=0, which should be excluded because the original equation has one root in it.
As a result, we obtain two intervals that satisfy the conditions of the problem

There will be many similar tasks in practice, try to figure out the tasks yourself and do not forget to take into account the conditions that are mutually exclusive. Study well the formulas for solving quadratic equations; they are often needed in calculations in various problems and sciences.

Quadratic equations. Discriminant. Solution, examples.

Attention!
There are additional
materials in Special Section 555.
For those who are very "not very..."
And for those who “very much…”)

Types of quadratic equations

What is a quadratic equation? What does it look like? In term quadratic equation the keyword is "square". This means that in the equation Necessarily there must be an x ​​squared. In addition to it, the equation may (or may not!) contain just X (to the first power) and just a number (free member). And there should be no X's to a power greater than two.

In mathematical terms, a quadratic equation is an equation of the form:

Here a, b and c- some numbers. b and c- absolutely any, but A– anything other than zero. For example:

Here A =1; b = 3; c = -4

Here A =2; b = -0,5; c = 2,2

Here A =-3; b = 6; c = -18

Well, you understand...

In these quadratic equations on the left there is full set members. X squared with a coefficient A, x to the first power with coefficient b And free member s.

Such quadratic equations are called full.

And if b= 0, what do we get? We have X will be lost to the first power. This happens when multiplied by zero.) It turns out, for example:

5x 2 -25 = 0,

2x 2 -6x=0,

-x 2 +4x=0

And so on. And if both coefficients b And c are equal to zero, then it’s even simpler:

2x 2 =0,

-0.3x 2 =0

Such equations where something is missing are called incomplete quadratic equations. Which is quite logical.) Please note that x squared is present in all equations.

By the way, why A can't be equal to zero? And you substitute instead A zero.) Our X squared will disappear! The equation will become linear. And the solution is completely different...

That's all the main types of quadratic equations. Complete and incomplete.

Solving quadratic equations.

Solving complete quadratic equations.

Quadratic equations are easy to solve. According to formulas and clear, simple rules. At the first stage, it is necessary to bring the given equation to a standard form, i.e. to the form:

If the equation is already given to you in this form, you do not need to do the first stage.) The main thing is to correctly determine all the coefficients, A, b And c.

The formula for finding the roots of a quadratic equation looks like this:

The expression under the root sign is called discriminant. But more about him below. As you can see, to find X, we use only a, b and c. Those. coefficients from a quadratic equation. Just carefully substitute the values a, b and c We calculate into this formula. Let's substitute with your own signs! For example, in the equation:

A =1; b = 3; c= -4. Here we write it down:

The example is almost solved:

This is the answer.

Everything is very simple. And what, you think it’s impossible to make a mistake? Well, yes, how...

The most common mistakes are confusion with sign values a, b and c. Or rather, not with their signs (where to get confused?), but with the substitution of negative values ​​into the formula for calculating the roots. What helps here is a detailed recording of the formula with specific numbers. If there are problems with calculations, do that!

Suppose we need to solve the following example:

Here a = -6; b = -5; c = -1

Let's say you know that you rarely get answers the first time.

Well, don't be lazy. It will take about 30 seconds to write an extra line. And the number of errors will decrease sharply. So we write in detail, with all the brackets and signs:

It seems incredibly difficult to write out so carefully. But it only seems so. Give it a try. Well, or choose. What's better, fast or right? Besides, I will make you happy. After a while, there will be no need to write everything down so carefully. It will work out right on its own. Especially if you use practical techniques that are described below. This evil example with a bunch of minuses can be solved easily and without errors!

But, often, quadratic equations look slightly different. For example, like this:

Did you recognize it?) Yes! This incomplete quadratic equations.

Solving incomplete quadratic equations.

They can also be solved using a general formula. You just need to understand correctly what they are equal to here. a, b and c.

Have you figured it out? In the first example a = 1; b = -4; A c? It's not there at all! Well yes, that's right. In mathematics this means that c = 0 ! That's all. Substitute zero into the formula instead c, and we will succeed. Same with the second example. Only we don’t have zero here With, A b !

But incomplete quadratic equations can be solved much more simply. Without any formulas. Let's consider the first incomplete equation. What can you do on the left side? You can take X out of brackets! Let's take it out.

And what from this? And the fact that the product equals zero if and only if any of the factors equals zero! Don't believe me? Okay, then come up with two non-zero numbers that, when multiplied, will give zero!
Does not work? That's it...
Therefore, we can confidently write: x 1 = 0, x 2 = 4.

All. These will be the roots of our equation. Both are suitable. When substituting any of them into the original equation, we get the correct identity 0 = 0. As you can see, the solution is much simpler than using the general formula. Let me note, by the way, which X will be the first and which will be the second - absolutely indifferent. It is convenient to write in order, x 1- what is smaller and x 2- that which is greater.

The second equation can also be solved simply. Move 9 to the right side. We get:

All that remains is to extract the root from 9, and that’s it. It will turn out:

Also two roots . x 1 = -3, x 2 = 3.

This is how all incomplete quadratic equations are solved. Either by placing X out of brackets, or by simply moving the number to the right and then extracting the root.
It is extremely difficult to confuse these techniques. Simply because in the first case you will have to extract the root of X, which is somehow incomprehensible, and in the second case there is nothing to take out of brackets...

Discriminant. Discriminant formula.

Magic word discriminant ! Rarely a high school student has not heard this word! The phrase “we solve through a discriminant” inspires confidence and reassurance. Because there is no need to expect tricks from the discriminant! It is simple and trouble-free to use.) I remind you of the most general formula for solving any quadratic equations:

The expression under the root sign is called a discriminant. Typically the discriminant is denoted by the letter D. Discriminant formula:

D = b 2 - 4ac

And what is so remarkable about this expression? Why did it deserve a special name? What the meaning of the discriminant? After all -b, or 2a in this formula they don’t specifically call it anything... Letters and letters.

Here's the thing. When solving a quadratic equation using this formula, it is possible only three cases.

1. The discriminant is positive. This means the root can be extracted from it. Whether the root is extracted well or poorly is another question. What is important is what is extracted in principle. Then your quadratic equation has two roots. Two different solutions.

2. The discriminant is zero. Then you will have one solution. Since adding or subtracting zero in the numerator does not change anything. Strictly speaking, this is not one root, but two identical. But, in a simplified version, it is customary to talk about one solution.

3. The discriminant is negative. The square root of a negative number cannot be taken. Well, okay. This means there are no solutions.

To be honest, when simply solving quadratic equations, the concept of a discriminant is not really needed. We substitute the values ​​of the coefficients into the formula and count. Everything happens there by itself, two roots, one, and none. However, when solving more complex tasks, without knowledge meaning and formula of the discriminant not enough. Especially in equations with parameters. Such equations are aerobatics for the State Examination and the Unified State Examination!)

So, how to solve quadratic equations through the discriminant you remembered. Or you learned, which is also not bad.) You know how to correctly determine a, b and c. Do you know how? attentively substitute them into the root formula and attentively count the result. You understand that the key word here is attentively?

Now take note of practical techniques that dramatically reduce the number of errors. The same ones that are due to inattention... For which it later becomes painful and offensive...

First appointment . Don’t be lazy before solving a quadratic equation and bring it to standard form. What does this mean?
Let's say that after all the transformations you get the following equation:

Don't rush to write the root formula! You'll almost certainly get the odds mixed up a, b and c. Construct the example correctly. First, X squared, then without square, then the free term. Like this:

And again, don’t rush! A minus in front of an X squared can really upset you. It's easy to forget... Get rid of the minus. How? Yes, as taught in the previous topic! We need to multiply the entire equation by -1. We get:

But now you can safely write down the formula for the roots, calculate the discriminant and finish solving the example. Decide for yourself. You should now have roots 2 and -1.

Reception second. Check the roots! According to Vieta's theorem. Don't be scared, I'll explain everything! Checking last thing the equation. Those. the one we used to write down the root formula. If (as in this example) the coefficient a = 1, checking the roots is easy. It is enough to multiply them. The result should be a free member, i.e. in our case -2. Please note, not 2, but -2! Free member with your sign . If it doesn’t work out, it means they’ve already screwed up somewhere. Look for the error.

If it works, you need to add the roots. Last and final check. The coefficient should be b With opposite familiar. In our case -1+2 = +1. A coefficient b, which is before the X, is equal to -1. So, everything is correct!
It’s a pity that this is so simple only for examples where x squared is pure, with a coefficient a = 1. But at least check in such equations! There will be fewer and fewer errors.

Reception third . If your equation has fractional coefficients, get rid of the fractions! Multiply the equation by a common denominator as described in the lesson "How to solve equations? Identity transformations." When working with fractions, errors keep creeping in for some reason...

By the way, I promised to simplify the evil example with a bunch of minuses. Please! Here he is.

In order not to get confused by the minuses, we multiply the equation by -1. We get:

That's all! Solving is a pleasure!

So, let's summarize the topic.

Practical tips:

1. Before solving, we bring the quadratic equation to standard form and build it Right.

2. If there is a negative coefficient in front of the X squared, we eliminate it by multiplying the entire equation by -1.

3. If the coefficients are fractional, we eliminate the fractions by multiplying the entire equation by the corresponding factor.

4. If x squared is pure, its coefficient is equal to one, the solution can be easily verified using Vieta’s theorem. Do it!

Now we can decide.)

Solve equations:

8x 2 - 6x + 1 = 0

x 2 + 3x + 8 = 0

x 2 - 4x + 4 = 0

(x+1) 2 + x + 1 = (x+1)(x+2)

Answers (in disarray):

x 1 = 0
x 2 = 5

x 1.2 =2

x 1 = 2
x 2 = -0.5

x - any number

x 1 = -3
x 2 = 3

no solutions

x 1 = 0.25
x 2 = 0.5

Does everything fit? Great! Quadratic equations are not your thing headache. The first three worked, but the rest didn’t? Then the problem is not with quadratic equations. The problem is in identical transformations of equations. Take a look at the link, it's helpful.

Doesn't quite work out? Or does it not work out at all? Then Section 555 will help you. All these examples are broken down there. Shown main errors in the solution. Of course, we also talk about the use of identical transformations in solving various equations. Helps a lot!

If you like this site...

By the way, I have a couple more interesting sites for you.)

You can practice solving examples and find out your level. Testing with instant verification. Let's learn - with interest!)

You can get acquainted with functions and derivatives.

In modern society, the ability to perform operations with equations containing a squared variable can be useful in many areas of activity and is widely used in practice in scientific and technical developments. Evidence of this can be found in the design of sea and river vessels, aircraft and missiles. Using such calculations, the trajectories of movement of a wide variety of bodies, including space objects, are determined. Examples with the solution of quadratic equations are used not only in economic forecasting, in the design and construction of buildings, but also in the most ordinary everyday circumstances. They may be needed on hiking trips, at sporting events, in stores when making purchases and in other very common situations.

Let's break the expression into its component factors

The degree of an equation is determined by the maximum value of the degree of the variable that the expression contains. If it is equal to 2, then such an equation is called quadratic.

If we speak in the language of formulas, then the indicated expressions, no matter how they look, can always be brought to the form when the left side of the expression consists of three terms. Among them: ax 2 (that is, a variable squared with its coefficient), bx (an unknown without a square with its coefficient) and c (a free component, that is, an ordinary number). All this on the right side is equal to 0. In the case when such a polynomial lacks one of its constituent terms, with the exception of ax 2, it is called an incomplete quadratic equation. Examples with the solution of such problems, the values ​​of the variables in which are easy to find, should be considered first.

If the expression looks like it has two terms on the right side, more precisely ax 2 and bx, the easiest way to find x is by putting the variable out of brackets. Now our equation will look like this: x(ax+b). Next, it becomes obvious that either x=0, or the problem comes down to finding a variable from the following expression: ax+b=0. This is dictated by one of the properties of multiplication. The rule states that the product of two factors results in 0 only if one of them is zero.

Example

x=0 or 8x - 3 = 0

As a result, we get two roots of the equation: 0 and 0.375.

Equations of this kind can describe the movement of bodies under the influence of gravity, which began to move from a certain point taken as the origin of coordinates. Here the mathematical notation takes the following form: y = v 0 t + gt 2 /2. By substituting the necessary values, equating the right side to 0 and finding possible unknowns, you can find out the time that passes from the moment the body rises to the moment it falls, as well as many other quantities. But we'll talk about this later.

Factoring an Expression

The rule described above makes it possible to solve these problems in more complex cases. Let's look at examples of solving quadratic equations of this type.

X 2 - 33x + 200 = 0

This quadratic trinomial is complete. First, let's transform the expression and factor it. There are two of them: (x-8) and (x-25) = 0. As a result, we have two roots 8 and 25.

Examples with solving quadratic equations in grade 9 allow this method to find a variable in expressions not only of the second, but even of the third and fourth orders.

For example: 2x 3 + 2x 2 - 18x - 18 = 0. When factoring the right side into factors with a variable, there are three of them, that is, (x+1), (x-3) and (x+3).

As a result, it becomes obvious that this equation has three roots: -3; -1; 3.

Square Root

Another case of an incomplete second-order equation is an expression represented in the language of letters in such a way that the right-hand side is constructed from the components ax 2 and c. Here, to obtain the value of the variable, the free term is transferred to the right side, and after that the square root is extracted from both sides of the equality. It should be noted that in this case there are usually two roots of the equation. The only exceptions can be equalities that do not contain a term with at all, where the variable is equal to zero, as well as variants of expressions when the right side turns out to be negative. In the latter case, there are no solutions at all, since the above actions cannot be performed with roots. Examples of solutions to quadratic equations of this type should be considered.

In this case, the roots of the equation will be the numbers -4 and 4.

Calculation of land area

The need for this kind of calculations appeared in ancient times, because the development of mathematics in those distant times was largely determined by the need to determine with the greatest accuracy the areas and perimeters of land plots.

We should also consider examples of solving quadratic equations based on problems of this kind.

So, let's say there is a rectangular plot of land, the length of which is 16 meters greater than the width. You should find the length, width and perimeter of the site if you know that its area is 612 m2.

To get started, let's first create the necessary equation. Let us denote by x the width of the area, then its length will be (x+16). From what has been written it follows that the area is determined by the expression x(x+16), which, according to the conditions of our problem, is 612. This means that x(x+16) = 612.

Solving complete quadratic equations, and this expression is exactly that, cannot be done in the same way. Why? Although the left side still contains two factors, their product does not equal 0 at all, so different methods are used here.

Discriminant

First of all, we will make the necessary transformations, then the appearance of this expression will look like this: x 2 + 16x - 612 = 0. This means that we have received the expression in a form corresponding to the previously specified standard, where a=1, b=16, c= -612.

This could be an example of solving quadratic equations using a discriminant. Here the necessary calculations are made according to the scheme: D = b 2 - 4ac. This auxiliary quantity not only makes it possible to find the required quantities in a second-order equation, it determines the number of possible options. If D>0, there are two of them; for D=0 there is one root. In case D<0, никаких шансов для решения у уравнения вообще не имеется.

About roots and their formula

In our case, the discriminant is equal to: 256 - 4(-612) = 2704. This suggests that our problem has an answer. If you know k, the solution of quadratic equations must be continued using the formula below. It allows you to calculate the roots.

This means that in the presented case: x 1 =18, x 2 =-34. The second option in this dilemma cannot be a solution, because the dimensions of the land plot cannot be measured in negative quantities, which means x (that is, the width of the plot) is 18 m. From here we calculate the length: 18+16=34, and the perimeter 2(34+ 18)=104(m2).

Examples and tasks

We continue our study of quadratic equations. Examples and detailed solutions of several of them will be given below.

1) 15x 2 + 20x + 5 = 12x 2 + 27x + 1

Let’s move everything to the left side of the equality, make a transformation, that is, we’ll get the type of equation that is usually called standard, and equate it to zero.

15x 2 + 20x + 5 - 12x 2 - 27x - 1 = 0

Adding similar ones, we determine the discriminant: D = 49 - 48 = 1. This means our equation will have two roots. Let's calculate them according to the above formula, which means that the first of them will be equal to 4/3, and the second to 1.

2) Now let's solve mysteries of a different kind.

Let's find out if there are any roots here x 2 - 4x + 5 = 1? To obtain a comprehensive answer, let’s reduce the polynomial to the corresponding usual form and calculate the discriminant. In the above example, it is not necessary to solve the quadratic equation, because this is not the essence of the problem at all. In this case, D = 16 - 20 = -4, which means there really are no roots.

Vieta's theorem

It is convenient to solve quadratic equations using the above formulas and the discriminant, when the square root is taken from the value of the latter. But this does not always happen. However, there are many ways to obtain the values ​​of variables in this case. Example: solving quadratic equations using Vieta's theorem. She is named after who lived in the 16th century in France and made a brilliant career thanks to his mathematical talent and connections at court. His portrait can be seen in the article.

The pattern that the famous Frenchman noticed was as follows. He proved that the roots of the equation add up numerically to -p=b/a, and their product corresponds to q=c/a.

Now let's look at specific tasks.

3x 2 + 21x - 54 = 0

For simplicity, let's transform the expression:

x 2 + 7x - 18 = 0

Let's use Vieta's theorem, this will give us the following: the sum of the roots is -7, and their product is -18. From here we get that the roots of the equation are the numbers -9 and 2. After checking, we will make sure that these variable values ​​really fit into the expression.

Parabola graph and equation

The concepts of quadratic function and quadratic equations are closely related. Examples of this have already been given earlier. Now let's look at some mathematical riddles in a little more detail. Any equation of the described type can be represented visually. Such a relationship, drawn as a graph, is called a parabola. Its various types are presented in the figure below.

Any parabola has a vertex, that is, a point from which its branches emerge. If a>0, they go high to infinity, and when a<0, они рисуются вниз. Простейшим примером подобной зависимости является функция y = x 2 . В данном случае в уравнении x 2 =0 неизвестное может принимать только одно значение, то есть х=0, а значит существует только один корень. Это неудивительно, ведь здесь D=0, потому что a=1, b=0, c=0. Выходит формула корней (точнее одного корня) квадратного уравнения запишется так: x = -b/2a.

Visual representations of functions help solve any equations, including quadratic ones. This method is called graphical. And the value of the x variable is the abscissa coordinate at the points where the graph line intersects with 0x. The coordinates of the vertex can be found using the formula just given x 0 = -b/2a. And by substituting the resulting value into the original equation of the function, you can find out y 0, that is, the second coordinate of the vertex of the parabola, which belongs to the ordinate axis.

The intersection of the branches of a parabola with the abscissa axis

There are a lot of examples of solving quadratic equations, but there are also general patterns. Let's look at them. It is clear that the intersection of the graph with the 0x axis for a>0 is possible only if 0 takes negative values. And for a<0 координата у 0 должна быть положительна. Для указанных вариантов D>0. Otherwise D<0. А когда D=0, вершина параболы расположена непосредственно на оси 0х.

From the graph of the parabola you can also determine the roots. The opposite is also true. That is, if it is not easy to obtain a visual representation of a quadratic function, you can equate the right side of the expression to 0 and solve the resulting equation. And knowing the points of intersection with the 0x axis, it is easier to construct a graph.

From the history

Using equations containing a squared variable, in the old days they not only made mathematical calculations and determined the areas of geometric figures. The ancients needed such calculations for grand discoveries in the fields of physics and astronomy, as well as for making astrological forecasts.

As modern scientists suggest, the inhabitants of Babylon were among the first to solve quadratic equations. This happened four centuries before our era. Of course, their calculations were radically different from those currently accepted and turned out to be much more primitive. For example, Mesopotamian mathematicians had no idea about the existence of negative numbers. They were also unfamiliar with other subtleties that any modern schoolchild knows.

Perhaps even earlier than the scientists of Babylon, the sage from India Baudhayama began solving quadratic equations. This happened about eight centuries before the era of Christ. True, the second-order equations, the methods for solving which he gave, were the simplest. Besides him, Chinese mathematicians were also interested in similar questions in the old days. In Europe, quadratic equations began to be solved only at the beginning of the 13th century, but later they were used in their works by such great scientists as Newton, Descartes and many others.

This topic may seem complicated at first due to the many not-so-simple formulas. Not only do the quadratic equations themselves have long notations, but the roots are also found through the discriminant. In total, three new formulas are obtained. Not very easy to remember. This is possible only after solving such equations frequently. Then all the formulas will be remembered by themselves.

General view of a quadratic equation

Here we propose their explicit recording, when the largest degree is written first, and then in descending order. There are often situations when the terms are inconsistent. Then it is better to rewrite the equation in descending order of the degree of the variable.

Let us introduce some notation. They are presented in the table below.

If we accept these notations, all quadratic equations are reduced to the following notation.

Moreover, the coefficient a ≠ 0. Let this formula be designated number one.

When an equation is given, it is not clear how many roots there will be in the answer. Because one of three options is always possible:

  • the solution will have two roots;
  • the answer will be one number;
  • the equation will have no roots at all.

And until the decision is finalized, it is difficult to understand which option will appear in a particular case.

Types of recordings of quadratic equations

There may be different entries in tasks. They will not always look like the general quadratic equation formula. Sometimes it will be missing some terms. What was written above is the complete equation. If you remove the second or third term in it, you get something else. These records are also called quadratic equations, only incomplete.

Moreover, only terms with coefficients “b” and “c” can disappear. The number "a" cannot be equal to zero under any circumstances. Because in this case the formula turns into a linear equation. The formulas for the incomplete form of equations will be as follows:

So, there are only two types; in addition to complete ones, there are also incomplete quadratic equations. Let the first formula be number two, and the second - three.

Discriminant and dependence of the number of roots on its value

You need to know this number in order to calculate the roots of the equation. It can always be calculated, no matter what the formula of the quadratic equation is. In order to calculate the discriminant, you need to use the equality written below, which will have number four.

After substituting the coefficient values ​​into this formula, you can get numbers with different signs. If the answer is yes, then the answer to the equation will be two different roots. If the number is negative, there will be no roots of the quadratic equation. If it is equal to zero, there will be only one answer.

How to solve a complete quadratic equation?

In fact, consideration of this issue has already begun. Because first you need to find a discriminant. After it is determined that there are roots of the quadratic equation, and their number is known, you need to use formulas for the variables. If there are two roots, then you need to apply the following formula.

Since it contains a “±” sign, there will be two values. The expression under the square root sign is the discriminant. Therefore, the formula can be rewritten differently.

Formula number five. From the same record it is clear that if the discriminant is equal to zero, then both roots will take the same values.

If solving quadratic equations has not yet been worked out, then it is better to write down the values ​​of all coefficients before applying the discriminant and variable formulas. Later this moment will not cause difficulties. But at the very beginning there is confusion.

How to solve an incomplete quadratic equation?

Everything is much simpler here. There is not even a need for additional formulas. And those that have already been written down for the discriminant and the unknown will not be needed.

First, let's look at incomplete equation number two. In this equality, it is necessary to take the unknown quantity out of brackets and solve the linear equation, which will remain in brackets. The answer will have two roots. The first one is necessarily equal to zero, because there is a multiplier consisting of the variable itself. The second one will be obtained by solving a linear equation.

Incomplete equation number three is solved by moving the number from the left side of the equality to the right. Then you need to divide by the coefficient facing the unknown. All that remains is to extract the square root and remember to write it down twice with opposite signs.

Below are some steps that will help you learn how to solve all kinds of equalities that turn into quadratic equations. They will help the student to avoid mistakes due to inattention. These shortcomings can cause poor grades when studying the extensive topic “Quadratic Equations (8th Grade).” Subsequently, these actions will not need to be performed constantly. Because a stable skill will appear.

  • First you need to write the equation in standard form. That is, first the term with the largest degree of the variable, and then - without a degree, and last - just a number.
  • If a minus appears before the coefficient “a”, it can complicate the work for a beginner studying quadratic equations. It's better to get rid of it. For this purpose, all equality must be multiplied by “-1”. This means that all terms will change sign to the opposite.
  • It is recommended to get rid of fractions in the same way. Simply multiply the equation by the appropriate factor so that the denominators cancel out.

Examples

It is required to solve the following quadratic equations:

x 2 − 7x = 0;

15 − 2x − x 2 = 0;

x 2 + 8 + 3x = 0;

12x + x 2 + 36 = 0;

(x+1) 2 + x + 1 = (x+1)(x+2).

The first equation: x 2 − 7x = 0. It is incomplete, therefore it is solved as described for formula number two.

After taking it out of brackets, it turns out: x (x - 7) = 0.

The first root takes the value: x 1 = 0. The second will be found from the linear equation: x - 7 = 0. It is easy to see that x 2 = 7.

Second equation: 5x 2 + 30 = 0. Again incomplete. Only it is solved as described for the third formula.

After moving 30 to the right side of the equation: 5x 2 = 30. Now you need to divide by 5. It turns out: x 2 = 6. The answers will be the numbers: x 1 = √6, x 2 = - √6.

The third equation: 15 − 2x − x 2 = 0. Hereinafter, solving quadratic equations will begin by rewriting them in standard form: − x 2 − 2x + 15 = 0. Now it’s time to use the second useful tip and multiply everything by minus one . It turns out x 2 + 2x - 15 = 0. Using the fourth formula, you need to calculate the discriminant: D = 2 2 - 4 * (- 15) = 4 + 60 = 64. It is a positive number. From what is said above, it turns out that the equation has two roots. They need to be calculated using the fifth formula. It turns out that x = (-2 ± √64) / 2 = (-2 ± 8) / 2. Then x 1 = 3, x 2 = - 5.

The fourth equation x 2 + 8 + 3x = 0 is transformed into this: x 2 + 3x + 8 = 0. Its discriminant is equal to this value: -23. Since this number is negative, the answer to this task will be the following entry: “There are no roots.”

The fifth equation 12x + x 2 + 36 = 0 should be rewritten as follows: x 2 + 12x + 36 = 0. After applying the formula for the discriminant, the number zero is obtained. This means that it will have one root, namely: x = -12/ (2 * 1) = -6.

The sixth equation (x+1) 2 + x + 1 = (x+1)(x+2) requires transformations, which consist in the fact that you need to bring similar terms, first opening the brackets. In place of the first there will be the following expression: x 2 + 2x + 1. After the equality, this entry will appear: x 2 + 3x + 2. After similar terms are counted, the equation will take the form: x 2 - x = 0. It has become incomplete . Something similar to this has already been discussed a little higher. The roots of this will be the numbers 0 and 1.

Let's work with quadratic equations. These are very popular equations! In its most general form, a quadratic equation looks like this:

For example:

Here A =1; b = 3; c = -4

Here A =2; b = -0,5; c = 2,2

Here A =-3; b = 6; c = -18

Well, you understand...

How to solve quadratic equations? If you have a quadratic equation in front of you in this form, then everything is simple. Remember the magic word discriminant . Rarely a high school student has not heard this word! The phrase “we solve through a discriminant” inspires confidence and reassurance. Because there is no need to expect tricks from the discriminant! It is simple and trouble-free to use. So, the formula for finding the roots of a quadratic equation looks like this:

The expression under the sign of the root is the one discriminant. As you can see, to find X, we use only a, b and c. Those. coefficients from a quadratic equation. Just carefully substitute the values a, b and c This is the formula we calculate. Let's substitute with your own signs! For example, for the first equation A =1; b = 3; c= -4. Here we write it down:

The example is almost solved:

That's all.

What cases are possible when using this formula? There are only three cases.

1. The discriminant is positive. This means the root can be extracted from it. Whether the root is extracted well or poorly is another question. What is important is what is extracted in principle. Then your quadratic equation has two roots. Two different solutions.

2. The discriminant is zero. Then you have one solution. Strictly speaking, this is not one root, but two identical. But this plays a role in inequalities, where we will study the issue in more detail.

3. The discriminant is negative. The square root of a negative number cannot be taken. Well, okay. This means there are no solutions.

Everything is very simple. And what, you think it’s impossible to make a mistake? Well, yes, how...
The most common mistakes are confusion with sign values a, b and c. Or rather, not with their signs (where to get confused?), but with the substitution of negative values ​​into the formula for calculating the roots. What helps here is a detailed recording of the formula with specific numbers. If there are problems with calculations, do that!



Suppose we need to solve the following example:

Here a = -6; b = -5; c = -1

Let's say you know that you rarely get answers the first time.

Well, don't be lazy. It will take about 30 seconds to write an extra line. And the number of errors will decrease sharply. So we write in detail, with all the brackets and signs:

It seems incredibly difficult to write out so carefully. But it only seems so. Give it a try. Well, or choose. What's better, fast or right? Besides, I will make you happy. After a while, there will be no need to write everything down so carefully. It will work out right on its own. Especially if you use practical techniques that are described below. This evil example with a bunch of minuses can be solved easily and without errors!

So, how to solve quadratic equations through the discriminant we remembered. Or they learned, which is also good. You know how to correctly determine a, b and c. Do you know how? attentively substitute them into the root formula and attentively count the result. You understand that the key word here is attentively?

However, quadratic equations often look slightly different. For example, like this:

This incomplete quadratic equations . They can also be solved through a discriminant. You just need to understand correctly what they are equal to here. a, b and c.

Have you figured it out? In the first example a = 1; b = -4; A c? It's not there at all! Well yes, that's right. In mathematics this means that c = 0 ! That's all. Substitute zero into the formula instead c, and we will succeed. Same with the second example. Only we don’t have zero here With, A b !

But incomplete quadratic equations can be solved much more simply. Without any discrimination. Let's consider the first incomplete equation. What can you do on the left side? You can take X out of brackets! Let's take it out.

And what from this? And the fact that the product equals zero if and only if any of the factors equals zero! Don't believe me? Okay, then come up with two non-zero numbers that, when multiplied, will give zero!
Does not work? That's it...
Therefore, we can confidently write: x = 0, or x = 4

All. These will be the roots of our equation. Both are suitable. When substituting any of them into the original equation, we get the correct identity 0 = 0. As you can see, the solution is much simpler than using a discriminant.

The second equation can also be solved simply. Move 9 to the right side. We get:

All that remains is to extract the root from 9, and that’s it. It will turn out:

Also two roots . x = +3 and x = -3.

This is how all incomplete quadratic equations are solved. Either by placing X out of brackets, or by simply moving the number to the right and then extracting the root.
It is extremely difficult to confuse these techniques. Simply because in the first case you will have to extract the root of X, which is somehow incomprehensible, and in the second case there is nothing to take out of brackets...

Now take note of practical techniques that dramatically reduce the number of errors. The same ones that are due to inattention... For which it later becomes painful and offensive...

First appointment. Don’t be lazy before solving a quadratic equation and bring it to standard form. What does this mean?
Let's say that after all the transformations you get the following equation:

Don't rush to write the root formula! You'll almost certainly get the odds mixed up a, b and c. Construct the example correctly. First, X squared, then without square, then the free term. Like this:

And again, don’t rush! A minus in front of an X squared can really upset you. It's easy to forget... Get rid of the minus. How? Yes, as taught in the previous topic! We need to multiply the entire equation by -1. We get:

But now you can safely write down the formula for the roots, calculate the discriminant and finish solving the example. Decide for yourself. You should now have roots 2 and -1.

Reception second. Check the roots! According to Vieta's theorem. Don't be scared, I'll explain everything! Checking last thing the equation. Those. the one we used to write down the root formula. If (as in this example) the coefficient a = 1, checking the roots is easy. It is enough to multiply them. The result should be a free member, i.e. in our case -2. Please note, not 2, but -2! Free member with your sign . If it doesn’t work out, it means they’ve already screwed up somewhere. Look for the error. If it works, you need to add the roots. Last and final check. The coefficient should be b With opposite familiar. In our case -1+2 = +1. A coefficient b, which is before the X, is equal to -1. So, everything is correct!
It’s a pity that this is so simple only for examples where x squared is pure, with a coefficient a = 1. But at least check in such equations! There will be fewer and fewer errors.

Reception third. If your equation has fractional coefficients, get rid of the fractions! Multiply the equation by a common denominator as described in the previous section. When working with fractions, errors keep creeping in for some reason...

By the way, I promised to simplify the evil example with a bunch of minuses. Please! Here he is.

In order not to get confused by the minuses, we multiply the equation by -1. We get:

That's all! Solving is a pleasure!

So, let's summarize the topic.

Practical tips:

1. Before solving, we bring the quadratic equation to standard form and build it Right.

2. If there is a negative coefficient in front of the X squared, we eliminate it by multiplying the entire equation by -1.

3. If the coefficients are fractional, we eliminate the fractions by multiplying the entire equation by the corresponding factor.

4. If x squared is pure, its coefficient is equal to one, the solution can be easily verified using Vieta’s theorem. Do it!

Fractional equations. ODZ.

We continue to master the equations. We already know how to work with linear and quadratic equations. The last view left - fractional equations. Or they are also called much more respectably - fractional rational equations. It is the same.

Fractional equations.

As the name implies, these equations necessarily contain fractions. But not just fractions, but fractions that have unknown in denominator. At least in one. For example:

Let me remind you that if the denominators are only numbers, these are linear equations.

How to decide fractional equations? First of all, get rid of fractions! After this, the equation most often turns into linear or quadratic. And then we know what to do... In some cases it can turn into an identity, such as 5=5 or an incorrect expression, such as 7=2. But this rarely happens. I will mention this below.

But how to get rid of fractions!? Very simple. Applying the same identical transformations.

We need to multiply the entire equation by the same expression. So that all denominators are reduced! Everything will immediately become easier. Let me explain with an example. Let us need to solve the equation:

How were you taught in elementary school? We move everything to one side, bring it to a common denominator, etc. Forget it like a bad dream! This is what you need to do when you add or subtract fractions. Or you work with inequalities. And in equations, we immediately multiply both sides by an expression that will give us the opportunity to reduce all the denominators (i.e., in essence, by a common denominator). And what is this expression?

On the left side, reducing the denominator requires multiplying by x+2. And on the right, multiplication by 2 is required. This means that the equation must be multiplied by 2(x+2). Multiply:

This is a common multiplication of fractions, but I’ll describe it in detail:

Please note that I am not opening the bracket yet (x + 2)! So, in its entirety, I write it:

On the left side it contracts entirely (x+2), and on the right 2. Which is what was required! After reduction we get linear the equation:

And everyone can solve this equation! x = 2.

Let's solve another example, a little more complicated:

If we remember that 3 = 3/1, and 2x = 2x/ 1, we can write:

And again we get rid of what we don’t really like - fractions.

We see that to reduce the denominator with X, we need to multiply the fraction by (x – 2). And a few are not a hindrance to us. Well, let's multiply. All left side and all right side:

Parentheses again (x – 2) I'm not revealing. I work with the bracket as a whole as if it were one number! This must always be done, otherwise nothing will be reduced.

With a feeling of deep satisfaction we reduce (x – 2) and we get an equation without any fractions, with a ruler!

Now let’s open the brackets:

We bring similar ones, move everything to the left side and get:

Classic quadratic equation. But the minus ahead is not good. You can always get rid of it by multiplying or dividing by -1. But if you look closely at the example, you will notice that it is best to divide this equation by -2! In one fell swoop, the minus will disappear, and the odds will become more attractive! Divide by -2. On the left side - term by term, and on the right - simply divide zero by -2, zero and we get:

We solve through the discriminant and check using Vieta’s theorem. We get x = 1 and x = 3. Two roots.

As you can see, in the first case the equation after the transformation became linear, but here it becomes quadratic. It happens that after getting rid of fractions, all the X's are reduced. Something remains, like 5=5. It means that x can be anything. Whatever it is, it will still be reduced. And it turns out to be pure truth, 5=5. But, after getting rid of fractions, it may turn out to be completely untrue, like 2=7. And this means that no solutions! Any X turns out to be untrue.

Realized the main solution fractional equations? It is simple and logical. We change the original expression so that everything we don’t like disappears. Or it interferes. In this case these are fractions. We will do the same with all sorts of complex examples with logarithms, sines and other horrors. We Always Let's get rid of all this.

However, we need to change the original expression in the direction we need according to the rules, yes... The mastery of which is preparation for the Unified State Exam in mathematics. So we are mastering it.

Now we will learn how to bypass one of main ambushes on the Unified State Exam! But first, let's see whether you fall into it or not?

Let's look at a simple example:

The matter is already familiar, we multiply both sides by (x – 2), we get:

I remind you, with brackets (x – 2) We work as if with one, integral expression!

Here I no longer wrote one in the denominators, it’s undignified... And I didn’t draw brackets in the denominators, except for x – 2 there is nothing, you don’t have to draw. Let's shorten:

Open the parentheses, move everything to the left, and give similar ones:

We solve, check, we get two roots. x = 2 And x = 3. Great.

Suppose the assignment says to write down the root, or their sum if there is more than one root. What are we going to write?

If you decide the answer is 5, you were ambushed. And the task will not be credited to you. They worked in vain... Correct answer is 3.

What's the matter?! And you try to do a check. Substitute the values ​​of the unknown into original example. And if at x = 3 everything will grow together wonderfully, we get 9 = 9, then when x = 2 It will be division by zero! What you absolutely cannot do. Means x = 2 is not a solution, and is not taken into account in the answer. This is the so-called extraneous or extra root. We simply discard it. The final root is one. x = 3.

How so?! – I hear indignant exclamations. We were taught that an equation can be multiplied by an expression! This is an identical transformation!

Yes, identical. Under a small condition - the expression by which we multiply (divide) - different from zero. A x – 2 at x = 2 equals zero! So everything is fair.

And now what i can do?! Don't multiply by expression? Should I check every time? Again it’s unclear!

Calmly! Don't panic!

In this difficult situation, three magic letters will save us. I know what you're thinking. Right! This ODZ . Area of ​​Acceptable Values.