Главная · Освещение · Презентация на тему: Пифагоровы штаны во все стороны равны. Для чего нужны "Пифагоровы штаны"

Презентация на тему: Пифагоровы штаны во все стороны равны. Для чего нужны "Пифагоровы штаны"

Для чего нужны «пифагоровы штаны» ? Работу выполнили учащиеся 8е класса

Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах... Или Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов его катетов.

Это одна из самых известных геометрических теорем древности, называемая теоремой Пифагора. Ее и сейчас знают практически все, кто когда-либо изучал планиметрию. Причина такой популярности теоремы Пифагора это её простота, красота, значимость. Теорема Пифагора проста, но не очевидна. Это сочетание двух противоречивых начал и придает ей особую притягательную силу, делает ее красивой. Она применяется в геометрии буквально на каждом шагу, и тот факт, что существует около 500 различных доказательств этой теоремы (геометрических, алгебраических, механических и т.д.), свидетельствует о её широком применении.

Теорема почти всюду носит имя Пифагора, но в настоящее время все согласны с тем, что она была открыта не Пифагором. Однако одни полагают, что он первым дал её полноценное доказательство, другие же отказывают ему и в этой заслуге. Эту теорему знали за много лет до Пифагора. Так, за 1500 лет до Пифагора древние египтяне знали о том, что треугольник со сторонами 3, 4 и 5 является прямоугольным, и пользовались этим свойством для построения прямых углов при планировке земельных участков и сооружений зданий.

Доказательство теоремы считалось в кругах учащихся средних веков очень трудным и называлось "ослиным мостом" или "бегством убогих", а сама теорема – "ветряной мельницей" или "теоремой невест". Учащиеся даже рисовали карикатуры и составляли стишки вроде этого: Пифагоровы штаны Во все стороны равны.

Доказательство, основанное на использовании понятия равновеликости фигур. На рисунке изображено два равных квадрата. Длина сторон каждого квадрата равна a + b . Каждый из квадратов разбит на части, состоящие из квадратов и прямоугольных треугольников. Ясно, что если от площади квадрата отнять учетверенную площадь прямоугольного треугольника с катетами a, b, то останутся равные площади, т. е. Древние индусы, которым принадлежит это рассуждение, обычно не записывали его, а сопровождали чертеж лишь одним словом: «смотри!» Вполне возможно, что такое же доказательство предложил и Пифагор.

Доказательство, предлагаемое школьным учебником. CD – высота треугольника АВС. АС = √ АD*AB АС 2 = AD*AB Аналогично, ВС 2 = BD*AB Учитывая, что AD + BD = AB , получаем AC 2 + BC 2 = AD*AB+ BD*AB = (AD+BD)*AB= AB 2 А С В D

Задача № 1 С аэродрома вылетели одновременно два самолёта: один - на запад, другой - на юг. Через два часа расстояние между ними было 2000 км. Найдите скорости самолётов, если скорость одного составляла 75% скорости другого. Решение: По теореме Пифагора: 4x2+(0,75x*2)2=20002 6,25x2=20002 2,5x=2000 x=800 0,75x=0,75*800=600. Ответ: 800 км/ч.; 600 км/ч.

Задача № 2. Как следовало бы поступить юному математику, чтобы надёжным образом получить прямой угол? Решение: Можно воспользоваться теоремой Пифагора и построить треугольник, придав его сторонам такую длину, чтобы треугольник получился прямоугольный. Проще всего взять для этого планки длиной в 3, 4 и 5 каких-либо произвольно выбранных равных отрезков.

Задача № 3. Найдите равнодействующую трёх сил по 200 Н каждая, если угол между первой и второй силами и между второй и третьей силами равен 60°. Решение: Модуль суммы первой пары сил равен: F1+22=F12+F22+2*F1*F2cosα где α-угол между векторами F1 и F2, т.е. F1+2=200√ 3 Н. Как ясно из соображений симметрии вектор F1+2 направлен по биссектрисе угла α, поэтому угол между ним и третьей силой равен: β=60°+60°/2=90°. Теперь найдём равнодействующую трёх сил: R2=(F3+F1+2) R=400 Н. Ответ: R=400 Н.

Задача № 4. Молниеотвод защищает от молнии все предметы, расстояние которых от его основания не превышает его удвоенной высоты. Определить оптимальное положение молниеотвода на двускатной крыше, обеспечивающее наименьшую его доступную высоту. Решение: По теореме Пифагора h2≥ a2+b2, значит h≥(a2+b2)1/2. Ответ: h≥(a2+b2)1/2.

Знаменитую теорему Пифагора  - «в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов»  - знают все со школьной скамьи.

Ну, вы помните «Пифагоровы штаны» , которые «во все стороны равны»  - схематический рисунок, поясняющий теорему греческого ученого.

Здесь a и b  - катеты, а с  - гипотенуза:

Сейчас я вам расскажу об одном оригинальном доказательстве этой теоремы, о котором вы, возможно, не знали…

Но, сначала рассмотрим одну лемму  - доказанное утверждение, которое полезно не само по себе, а для доказательства других утверждений (теорем).

Возьмем прямоугольный треугольник с вершинами X , Y и Z , где Z  - прямой угол и опустим перпендикуляр с прямого угла Z на гипотенузу. Здесь W  - точка, в которой высота пересекается с гипотенузой.

Эта линия (перпендикуляр) ZW разбивает треугольник на подобные копии самого себя.

Напомню, что подобными называются треугольники, углы у которых соответственно равны, а стороны одного треугольника пропорциональны сходственным сторонам другого треугольника.

В нашем примере образовавшиеся треугольники XWZ и YWZ подобны друг другу и также подобны исходному треугольнику XYZ .

Доказать это несложно.

Начнем с треугольника XWZ, обратите внимание, что ∠XWZ = 90, и поэтому ∠XZW = 180–90-∠X. Но 180–90-∠X - это именно то, что ∠Y, поэтому треугольник XWZ должен быть подобным (все углы равны) треугольнику XYZ. Такое же упражнение можно выполнить для треугольника YWZ.

Лемма доказана! В прямоугольном треугольнике высота (перпендикуляр), опущенная на гипотенузу, разбивает треугольник на два подобных, которые в свою очередь подобны исходному треугольнику.

Но, вернемся к нашим «Пифагоровым штанам»…

Опустим перпендикуляр на гипотенузу c . В результате у нас образовались два прямогульных треугольника внутри нашего прямоугольного треугольника. Обозначим эти треугольники (на картинке вверху зеленым цветом) буквами A и B , а исходный треугольник - буквой С .

Разумеется, площадь треугольника С равна сумме площадей треугольников A и B .

Т.е. А + B = С

Теперь разобьем фигуру вверху («Пифагоровы штаны») на три фигурки-домика:

Как мы уже знаем из леммы, треугольники A , B и C подобны друг другу, поэтому и образовавшиеся фигурки-домики также подобны и являются масштабированными версиями друг друга.

Это означает, что соотношение площадей A и , - это то же самое, что отношение площадей B и b², а также C и .

Таким образом, мы имеем A / a² = B / b² = C / c² .

Обозначим это соотношение площадей треугольника и квадрата в фигуре-домике буквой k .

Т.е. k  - это некий коэффициент, связывающий площадь треугольника (крыши домика) с площадью квадрата под ним:
k = A / a² = B / b² = C / c²

Из этого следует, что площади треугольников можно выразить через площади квадратов под ними таким образом:
A = ka² , B = kb² , и C = kc²

Но, мы помним, что A+B = C , а значит, ka² + kb² = kc²

Или a² + b² = c²

А это и есть доказательство теоремы Пифагора !

«Пифагоровы штаны – на все стороны равны.
Чтобы это доказать, надо снять и показать».

Этот стишок известен всем со средней школы, с тех самых пор, когда на уроке геометрии мы изучали знаменитую теорему Пифагора: квадрат длины гипотенузы прямоугольного треугольника равен сумме квадратов катетов. Хотя сам Пифагор никогда не носил штанов – в те времена греки их не носили. Кто же такой Пифагор?
Пифагор Самосский от лат. Pythagoras, пифийский вещатель (570-490 гг.до н.э.) – древнегреческий философ, математик и мистик, создатель религиозно-философской школы пифагорейцев.
Среди противоречивых учений своих учителей Пифагор искал живой связи, синтеза единого великого целого. Он поставил себе цель - найти путь ведущий к свету истины, то есть познать жизнь в единстве. С этой целью Пифагор посетил весь древний мир. Он считал, что должен расширить и без того уже широкой кругозор, изучая все религии, доктрины и культы. Он жил среди раввинов и много узнал о тайных традициях Моисея, законодателя Израиля. Затем посетил Египет, где был посвящен в Мистерии Адониса, и, сумев пересечь долину Евфрата, он находился долго у халдеев, чтобы перенять их секретную мудрость. Пифагор посетил Азию и Африку, в том числе Индостан и Вавилон. В Вавилоне он изучил знания магов.
Заслугой пифагорейцев было выдвижение мысли о количественных закономерностях развития мира, что содействовало развитию математических, физических, астрономических и географических знаний. В основе вещей лежит Число, учил Пифагор, познать мир – значит познать управляющие им числа. Изучая числа, пифагорейцы разработали числовые отношения и нашли их во всех областях человеческой деятельности. Пифагор учил тайно и не оставил после себя письменных трудов. Пифагор придавал большое значение числу. Его философские взгляды в значительной мере обусловлены математическими представлениями. Он говорил: «Всё есть число», «все вещи суть числа», выделяя, таким образом, одну сторону в понимании мира, а именно, его измеряемость числовым выражением. Пифагор считал, что число владеет всеми вещами, в том числе и нравственными, и духовными качествами. Он учил (согласно Аристотелю): «Справедливость… есть число, помноженное само на себя». Он полагал, что в каждом предмете, помимо его изменчивых состояний, существует неизменное бытие, некая неизменная субстанция. Это и есть число. Отсюда основная идея пифагореизма: число – основа всего сущего. Пифагорейцы видели в числе и в математических отношениях объяснение скрытого смысла явлений, законов природы. По мнению Пифагора, объекты мысли более реальны, чем объекты чувственного познания, так как числа имеют вневременную природу, т.е. вечны. Они – некая реальность, стоящая выше реальности вещей. Пифагор говорит, что все свойства предмета могут быть уничтожены, или могут измениться, кроме одного лишь числового свойства. Это свойство – Единица. Единица – это бытие вещей, неуничтожимая и неразложимая, неизменное. Раздробите любой предмет на мельчайшие частицы – каждая частица будет одна. Утверждая, что числовое бытие есть единственно неизменное бытие, Пифагор пришел к выводу, что все предметы есть суть копии чисел.
Единица есть абсолютное число Единица обладает вечностью. Единице не надо находиться ни в каком отношении к чему-либо иному. Она существует сама по себе. Два есть только отношение одного к одному. Все числа есть лишь
числовые отношения Единицы, её модификации. А все формы бытия есть лишь определённые стороны бесконечности, а значит и Единицы. Первоначальное Один заключает в себе все числа, следовательно, заключает в себе элементы всего мира. Предметы – это реальные проявления абстрактного бытия. Пифагор был первым, кто обозначил космос со всеми находящимися в нем вещами, как порядок, который устанавливается числом. Этот порядок доступен разуму, осознаётся им, что позволяет совершенно по-новому видеть мир.
Процесс познания мира, по Пифагору, есть процесс познания управляющих им чисел. Космос после Пифагора стал рассматриваться как упорядоченное числом мироздания.
Пифагор учил, что душа человека бессмертна. Ему принадлежит идея о переселении душ. Он считал, что всё происходящее в мире снова и снова повторяется через определённые периоды времени, а души умерших через какое-то время вселяются в других. Душа, как число представляет собой Единицу, т.е. душа совершенна по существу. Но всякое совершенство, поскольку оно приходит в движение, обращается в несовершенство, хотя и стремится обрести вновь свое прежнее совершенное состояние. Несовершенством Пифагор называл отклонение от Единицы; поэтому Два считалось проклятом числом. Душа в человеке пребывает в состоянии сравнительного несовершенства. Она состоит из трёх элементов: разум, ум, страсть. Но если умом и страстями обладают и животные, то разумом (рассудком) наделён только человек. Какая-либо из этих трёх сторон в человеке может возобладать, и тогда человек становится по преимуществу или разумным, или здравомыслящим, или же чувственным. Соответственно он оказывается или философом, или обыкновенным человеком, или животным.
Однако вернёмся к числам. Да действительно числа являются абстрактным проявлением основного философского закона Вселенной – Единства Противоположностей.
Примечание. Абстракция служит базой для процессов обобщения и образования понятий. Она – необходимое условие категоризации. Ею формируются обобщённые образы реальности, позволяющие выделить значимые для определённой деятельности связи и отношения объектов.
Единство Противоположностей Вселенной состоят из Формы и Содержания, Форма является количественной категорией, а Содержание качественной категорией. Естественно, что числа выражают в абстракции количественную и качественную категории. Отсюда сложение (вычитание) чисел это количественная составляющая абстракции Форм, а умножение (деление) – это качественная составляющая абстракции Содержания. Числа абстракции Форм и Содержания находятся в неразрывной связи Единства Противоположностей.
Попробуем произвести математические операции, над числами установив неразрывную связь Формы и Содержания.

Так рассмотрим числовой ряд.
1,2,3,4,5,6,7,8,9 . 1+2= 3 (3) 4+5=9 (9)… (6) 7+8=15 -1+5=6 (9). Далее 10 – (1+0) + 11 (1+1) = (1+2= 3) - 12 –(1+2=3) (3) 13-(1+3= 4) + 14 –(1+4=5) = (4+5= 9) (9) …15 –(1+5=6) (6) … 16- (1+6=7) + 17 – (1+7 =8) (7+8=15) – (1+5= 6) … (18) – (1+8=9) (9). 19 – (1+9= 10) (1) -20 – (2+0=2) (1+2=3) 21 –(2+1=3) (3) – 22- (2+2= 4) 23-(2+3=5) (4+5=9) (9) 24- (2+4=6) 25 – (2+5=7) 26 – (2+6= 8) – 7+ 8= 15 (1+5=6) (6) И т.д.
Отсюда мы наблюдаем циклическое преобразование Форм, которому соответствует цикл Содержания –1-й –цикл - 3-9-6 - 6-9-3 2-й цикл – 3-9- 6 -6-9-3 и т.д.
6
9 9
3

Циклы отображают выворот тора Вселенной, где Противоположностями чисел абстакции Форм и Содержания являются 3 и 6, где 3 определяет Сжатие, а 6 - Растяжение. Компромиссом для их взаимодействия является число 9.
Далее 1,2,3,4,5,6,7,8,9 . 1х2=2 (3) 4х5=20 (2+0=2) (6) 7х8=56 (5+6=11 1+1= 2) (9) и т.д.
Цикл выглядит так 2-(3)-2-(6)- 2- (9)… где 2 является составляющим элементом цикла 3-6-9.
Далее таблица умножения:
2х1=2
2х2=4
(2+4=6)
2х3=6
2х4=8
2х5=10
(8+1+0 = 9)
2х6=12
(1+2=3)
2х7=14
2х8=16
(1+4+1+6=12;1+2=3)
2х9=18
(1+8=9)
Цикл -6,6- 9- 3,3 – 9.
3х1=3
3х2=6
3х3=9
3х4=12 (1+2=3)
3х5=15 (1+5=6)
3х6=18 (1+8=9)
3х7=21 (2+1=3)
3х8=24 (2+4=6)
3х9=27 (2+7=9)
Цикл 3-6-9; 3-6-9; 3-6-9.
4х1=4
4х2=8 (4+8=12 1+2=3)
4х3=12 (1+2=3)
4х4=16
4х5=20 (1+6+2+0= 9)
4х6=24 (2+4=6)
4х7=28
4х8= 32 (2+8+3+2= 15 1+5=6)
4х9=36 (3+6=9)
Цикл 3,3 – 9 - 6,6 - 9.
5х1=5
5х2=10 (5+1+0=6)
5х3=15 (1+5=6)
5х4=20
5х5=25 (2+0+2+5=9)
5х6=30 (3+0=3)
5х7=35
5х8=40 (3+5+4+0= 12 1+2=3)
5х9=45 (4+5=9)
Цикл -6,6 – 9 - 3,3- 9.
6х1= 6
6х2=12 (1+2=3)
6х3=18 (1+8=9)
6х4=24 (2+4=6)
6х5=30 (3+0=3)
6х6=36 (3+6=9)
6х7=42 (4+2=6)
6х8=48 (4+8=12 1+2=3)
6х9=54 (5+4=9)
Цикл – 3-9-6; 3-9-6; 3-9.
7х1=7
7х2=14 (7+1+4= 12 1+2=3)
7х3=21 (2+1=3)
7х4=28
7х5=35 (2+8+3+5=18 1+8=9)
7х6=42 (4+2=6)
7х7=49
7х8=56 (4+9+5+6=24 2+4=6)
7х9=63 (6+3=9)
Цикл – 3,3 – 9 – 6,6 – 9.
8х1= 8
8х2=16 (8+1+6= 15 1+5=6.
8х3=24 (2+4=6)
8х4=32
8х5=40 (3+2+4+0 =9)
8х6=48 (4+8=12 1+2=3)
8х7=56
8х8=64 (5+6+6+4= 21 2+1=3)
8х9=72 (7+2=9)
Цикл -6,6 – 9 – 3,3 – 9.
9х1=9
9х2= 18 (1+8=9)
9х3= 27 (2+7=9)
9х4=36 (3+6=9)
9х5=45 (4+5= 9)
9х6=54 (5+4=9)
9х7=63 (6+3=9)
9х8=72 (7+2=9)
9х9=81 (8+1=9).
Цикл – 9-9-9-9-9-9-9-9-9.

Числа качественной категории Содержания – 3-6-9, указывают на ядро атома с разным количеством нейтронов, а количественной категории указывают на количество электронов атома. Химические элемент – это ядра, массы которых кратные 9, а кратные – 3 и 6 являются изотопами.
Примечание. Изотоп (от греч. «равный», «одинаковый» и «место») – разновидности атомов и ядер одного химического элемента с разным количеством нейтронов в ядре. Химический элемент – это совокупность атомов с одинаковыми зарядами ядра. Изотопы-разновидности атомов химического элемента с одинаковым зарядом ядра, но разным массовым числом.

Все действительные предметы состоят из атомов, а атомы определяются числами.
Поэтому естественно, что Пифагор был убеждён, что числа есть действительные предметы, а не простые символы. Число – это определённое состояние материальных предметов, сущность вещи. И в этом Пифагор был прав.

Потенциал к творчеству обычно приписывают гуманитарным дисциплинам, естественно научным оставляя анализ, практический подход и сухой язык формул и цифр. Математику к гуманитарным предметам никак не отнесешь. Но без творчеств в «царице всех наук» далеко не уедешь – об этом людям известно с давних пор. Со времен Пифагора, например.

Школьные учебники, к сожалению, обычно не объясняют, что в математике важно не только зубрить теоремы, аксиомы и формулы. Важно понимать и чувствовать ее фундаментальные принципы. И при этом попробовать освободить свой ум от штампов и азбучных истин – только в таких условиях рождаются все великие открытия.

К таким открытиям можно отнести и то, которое сегодня мы знаем как теорему Пифагора. С его помощью мы попробуем показать, что математика не только может, но и должна быть увлекательной. И что это приключение подходит не только ботаникам в толстых очках, а всем, кто крепок умом и силен духом.

Из истории вопроса

Строго говоря, хоть теорема и называется «теоремой Пифагора», сам Пифагор ее не открывал. Прямоугольный треугольник и его особенные свойства изучались задолго до него. Есть две полярных точки зрения на этот вопрос. По одной версии Пифагор первым нашел полноценное доказательство теоремы. По другой доказательство не принадлежит авторству Пифагора.

Сегодня уже не проверишь, кто прав, а кто заблуждается. Известно лишь, что доказательства Пифагора, если оно когда-либо существовало, не сохранилось. Впрочем, высказываются предположения, что знаменитое доказательство из «Начал» Евклида может принадлежать как раз Пифагору, и Евклид его только зафиксировал.

Также сегодня известно, что задачи о прямоугольном треугольнике встречаются в египетских источниках времен фараона Аменемхета I, на вавилонских глиняных табличках периода правления царя Хаммурапи, в древнеиндийском трактате «Сульва сутра» и древнекитайском сочинении «Чжоу-би суань цзинь».

Как видите, теорема Пифагора занимала умы математиков с древнейших времен. Подтверждением служит и около 367 разнообразных доказательств, существующих сегодня. В этом с ней не может тягаться ни одна другая теорема. Среди знаменитых авторов доказательств можно вспомнить Леонардо да Винчи и двадцатого президента США Джеймса Гарфилда. Все это говорит о чрезвычайной важности этой теоремы для математики: из нее выводится или так или иначе с нею связано большинство теорем геометрии.

Доказательства теоремы Пифагора

В школьных учебниках в основном приводят алгебраические доказательства. Но суть теоремы в геометрии, так что давайте рассмотрим в первую очередь те доказателства знаменитой теоремы, которые опираются на эту науку.

Доказательство 1

Для самого простого доказательства теоремы Пифагора для прямоугольного треугольника нужно задать идеальные условия: пусть треугольник будет не только прямоугольным, но и равнобедренным. Есть основания полагать, что именно такой треугольник первоначально рассматривали математики древности.

Утверждение «квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах» можно проиллюстрировать следующим чертежом:

Посмотрите на равнобедренный прямоугольный треугольник ABC: На гипотенузе АС можно построить квадрат, состоящий из четырех треугольников, равных исходному АВС. А на катетах АВ и ВС построено по квадрату, каждый из которых содержит по два аналогичных треугольника.

Кстати, этот чертеж лег в основу многочисленных анекдотов и карикатур, посвященных теореме Пифагора. Самый знаменитый, пожалуй, это «Пифагоровы штаны во все стороны равны» :

Доказательство 2

Этот метод сочетает в себе алгебру и геометрию и может рассматриваться как вариант древнеиндийского доказательства математика Бхаскари.

Постройте прямоугольный треугольник со сторонами a, b и c (рис.1). Затем постройте два квадрата со сторонами, равными сумме длин двух катетов, – (a+b) . В каждом из квадратов выполните построения, как на рисунках 2 и 3.

В первом квадрате постройте четыре таких же треугольника, как на рисунке 1. В результате получаться два квадрата: один со стороной a, второй со стороной b .

Во втором квадрате четыре построенных аналогичных треугольника образуют квадрат со стороной, равной гипотенузе c .

Сумма площадей построенных квадратов на рис.2 равна площади построенного нами квадрата со стороной с на рис.3. Это легко проверить, высчитав площади квадратов на рис. 2 по формуле. А площадь вписанного квадрата на рисунке 3. путем вычитания площадей четырех равных между собой вписанных в квадрат прямоугольных треугольников из площади большого квадрата со стороной (a+b) .

Записав все это, имеем: a 2 +b 2 =(a+b) 2 – 2ab . Раскройте скобки, проведите все необходимые алгебраические вычисления и получите, что a 2 +b 2 = a 2 +b 2 . При этом площадь вписанного на рис.3. квадрата можно вычислить и по традиционной формуле S=c 2 . Т.е. a 2 +b 2 =c 2 – вы доказали теорему Пифагора.

Доказательство 3

Само же древнеиндийское доказательство описано в XII веке в трактате «Венец знания» («Сиддханта широмани») и в качестве главного аргумента автор использует призыв, обращенный к математическим талантам и наблюдательности учеников и последователей: «Смотри!».

Но мы разберем это доказательство более подробно:

Внутри квадрата постройте четыре прямоугольных треугольника так, как это обозначено на чертеже. Сторону большого квадрата, она же гипотенуза, обозначим с . Катеты треугольника назовем а и b . В соответствии с чертежом сторона внутреннего квадрата это (a-b) .

Используйте формулу площади квадрата S=c 2 , чтобы вычислить площадь внешнего квадрата. И одновременно высчитайте ту же величину, сложив площадь внутреннего квадрата и площади всех четырех прямоугольных треугольников: (a-b) 2 2+4*1\2*a*b .

Вы можете использовать оба варианта вычисления площади квадрата, чтобы убедиться: они дадут одинаковый результат. И это дает вам право записать, что c 2 =(a-b) 2 +4*1\2*a*b . В результате решения вы получите формулу теоремы Пифагора c 2 =a 2 +b 2 . Теорема доказана.

Доказательство 4

Это любопытное древнекитайское доказательство получило название «Стул невесты» - из-за похожей на стул фигуры, которая получается в результате всех построений:

В нем используется чертеж, который мы уже видели на рис.3 во втором доказательстве. А внутренний квадрат со стороной с построен так же, как в древнеиндийском доказательстве, приведенном выше.

Если мысленно отрезать от чертежа на рис.1 два зеленых прямоугольных треугольника, перенести их к противоположным сторонам квадрата со стороной с и гипотенузами приложить к гипотенузам сиреневых треугольников, получится фигура под названием «стул невесты» (рис.2). Для наглядности можно то же самое проделать с бумажными квадратами и треугольниками. Вы убедитесь, что «стул невесты» образуют два квадрата: маленькие со стороной b и большой со стороной a .

Эти построения позволили древнекитайским математикам и нам вслед за ними прийти к выводу, что c 2 =a 2 +b 2 .

Доказательство 5

Это еще один способ найти решение для теоремы Пифагора, опираясь на геометрию. Называется он «Метод Гарфилда».

Постройте прямоугольный треугольник АВС . Нам надо доказать, что ВС 2 =АС 2 +АВ 2 .

Для этого продолжите катет АС и постройте отрезок CD , который равен катету АВ . Опустите перпендикулярный AD отрезок ED . Отрезки ED и АС равны. Соедините точки Е и В , а также Е и С и получите чертеж, как на рисунке ниже:

Чтобы доказать терему, мы вновь прибегаем к уже опробованному нами способу: найдем площадь получившейся фигуры двумя способами и приравняем выражения друг к другу.

Найти площадь многоугольника ABED можно, сложив площади трех треугольников, которые ее образуют. Причем один из них, ЕСВ , является не только прямоугольным, но и равнобедренным. Не забываем также, что АВ=CD , АС=ED и ВС=СЕ – это позволит нам упростить запись и не перегружать ее. Итак, S ABED =2*1/2(AB*AC)+1/2ВС 2 .

При этом очевидно, что ABED – это трапеция. Поэтому вычисляем ее площадь по формуле: S ABED =(DE+AB)*1/2AD . Для наших вычислений удобней и наглядней представить отрезок AD как сумму отрезков АС и CD .

Запишем оба способа вычислить площадь фигуры, поставив между ними знак равенства: AB*AC+1/2BC 2 =(DE+AB)*1/2(AC+CD) . Используем уже известное нам и описанное выше равенство отрезков, чтобы упростить правую часть записи: AB*AC+1/2BC 2 =1/2(АВ+АС) 2 . А теперь раскроем скобки и преобразуем равенство: AB*AC+1/2BC 2 =1/2АС 2 +2*1/2(АВ*АС)+1/2АВ 2 . Закончив все преобразования, получим именно то, что нам и надо: ВС 2 =АС 2 +АВ 2 . Мы доказали теорему.

Конечно, этот список доказательств далеко не полный. Теорему Пифагора также можно доказать с помощью векторов, комплексных чисел, дифференциальный уравнений, стереометрии и т.п. И даже физики: если, например, в аналогичные представленным на чертежах квадратные и треугольные объемы залить жидкость. Переливая жидкость, можно доказать равенство площадей и саму теорему в итоге.

Пару слов о Пифагоровых тройках

Этот вопрос мало или вообще не изучается в школьной программе. А между тем он является очень интересным и имеет большое значение в геометрии. Пифагоровы тройки применяются для решения многих математических задач. Представление о них может пригодиться вам в дальнейшем образовании.

Так что же такое Пифагоровы тройки? Так называют натуральные числа, собранные по трое, сумма квадратов двух из которых равна третьему числу в квадрате.

Пифагоровы тройки могут быть:

  • примитивными (все три числа – взаимно простые);
  • не примитивными (если каждое число тройки умножить на одно и то же число, получится новая тройка, которая не является примитивной).

Еще до нашей эры древних египтян завораживала мания чисел Пифагоровых троек: в задачах они рассматривали прямоугольный треугольник со сторонами 3,4 и 5 единиц. К слову, любой треугольник, стороны которого равны числам из пифагоровой тройки, по умолчанию является прямоугольным.

Примеры Пифагоровых троек: (3, 4, 5), (6, 8, 10), (5, 12, 13), (9, 12, 15), (8, 15, 17), (12, 16, 20), (15, 20, 25), (7, 24, 25), (10, 24, 26), (20, 21, 29), (18, 24, 30), (10, 30, 34), (21, 28, 35), (12, 35, 37), (15, 36, 39), (24, 32, 40), (9, 40, 41), (27, 36, 45), (14, 48, 50), (30, 40, 50) и т.д.

Практическое применение теоремы

Теорема Пифагора находит применение не только в математике, но и в архитектуре и строительстве, астрономии и даже литературе.

Сначала про строительство: теорема Пифагора находит в нем широкое применение в задачах разного уровня сложности. Например, посмотрите на окно в романском стиле:

Обозначим ширину окна как b , тогда радиус большой полуокружности можно обозначить как R и выразить через b: R=b/2 . Радиус меньших полуокружностей также выразим через b: r=b/4 . В этой задаче нас интересует радиус внутренней окружности окна (назовем его p ).

Теорема Пифагора как раз и пригодиться, чтобы вычислить р . Для этого используем прямоугольный треугольник, который на рисунке обозначен пунктиром. Гипотенуза треугольника состоит из двух радиусов: b/4+p . Один катет представляет собой радиус b/4 , другой b/2-p . Используя теорему Пифагора, запишем: (b/4+p) 2 =(b/4) 2 +(b/2-p) 2 . Далее раскроем скобки и получим b 2 /16+ bp/2+p 2 =b 2 /16+b 2 /4-bp+p 2 . Преобразуем это выражение в bp/2=b 2 /4-bp . А затем разделим все члены на b , приведем подобные, чтобы получить 3/2*p=b/4 . И в итоге найдем, что p=b/6 – что нам и требовалось.

С помощью теоремы можно вычислить длину стропила для двускатной крыши. Определить, какой высоты вышка мобильной связи нужна, чтобы сигнал достигал определенного населенного пункта. И даже устойчиво установить новогоднюю елку на городской площади. Как видите, эта теорема живет не только на страницах учебников, но и часто бывает полезна в реальной жизни.

Что касается литературы, то теорема Пифагора вдохновляла писателей со времен античности и продолжает это делать в наше время. Например, немецкого писателя девятнадцатого века Адельберта фон Шамиссо она вдохновила на написание сонета:

Свет истины рассеется не скоро,
Но, воссияв, рассеется навряд
И, как тысячелетия назад,
Не вызовет сомнения и спора.

Мудрейшие, когда коснется взора
Свет истины, богов благодарят;
И сто быков, заколоты, лежат –
Ответный дар счастливца Пифагора.

С тех пор быки отчаянно ревут:
Навеки всполошило бычье племя
Событие, помянутое тут.

Им кажется: вот-вот настанет время,
И сызнова их в жертву принесут
Какой-нибудь великой теореме.

(перевод Виктора Топорова)

А в двадцатом веке советский писатель Евгений Велтистов в книге «Приключения Электроника» доказательствам теоремы Пифагора отвел целую главу. И еще полглавы рассказу о двухмерном мире, какой мог бы существовать, если бы теорема Пифагора стала основополагающим законом и даже религией для отдельно взятого мира. Жить в нем было бы гораздо проще, но и гораздо скучнее: например, там никто не понимает значения слов «круглый» и «пушистый».

А еще в книге «Приключения Электроника» автор устами учителя математики Таратара говорит: «Главное в математике – движение мысли, новые идеи». Именно этот творческий полет мысли порождает теорема Пифагора – не зря у нее столько разнообразных доказательств. Она помогает выйти за границы привычного, и на знакомые вещи посмотреть по-новому.

Заключение

Эта статья создана, чтобы вы могли заглянуть за пределы школьной программы по математике и узнать не только те доказательства теоремы Пифагора, которые приведены в учебниках «Геометрия 7-9» (Л.С. Атанасян, В.Н. Руденко) и «Геометрия 7-11» (А.В. Погорелов), но и другие любопытные способы доказать знаменитую теорему. А также увидеть примеры, как теорема Пифагора может применяться в обычной жизни.

Во-первых, эта информация позволит вам претендовать на более высокие баллы на уроках математики – сведения по предмету из дополнительных источников всегда высоко оцениваются.

Во-вторых, нам хотелось помочь вам прочувствовать, насколько математика интересная наука. Убедиться на конкретных примерах, что в ней всегда есть место творчеству. Мы надеемся, что теорема Пифагора и эта статья вдохновят вас на самостоятельные поиски и волнующие открытия в математике и других науках.

Расскажите нам в комментариях, показались ли вам приведенные в статье доказательства интересными. Пригодились ли вам эти сведения в учебе. Напишите нам, что думаете о теореме Пифагора и этой статье – нам будет приятно обсудить все это с вами.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

МБОУ Бондарская СОШ Ученический проект на тему: «Пифагор и его теорема» Подготовил: Эктов Константин, ученик 7 А класса Руководитель: Долотова Надежда Ивановна, учитель математики 2015 г.

2 слайд

Описание слайда:

3 слайд

Описание слайда:

Аннотация. Геометрия – очень интересная наука. Она содержит множество не похожих друг на друга теорем, но порой так необходимых. Я очень заинтересовался теоремой Пифагора. К сожалению, одно из самых главных утверждений мы проходим лишь в восьмом классе. Я решил приоткрыть завесу тайны и исследовать теорему Пифагора.

4 слайд

Описание слайда:

5 слайд

Описание слайда:

6 слайд

Описание слайда:

Задачи Изучить биографию Пифагора. Исследовать историю возникновения и доказательства теоремы. Выяснить, как теорема используется в искусстве. Найти исторические задачи, в решении которых применяется теорема Пифагора. Познакомиться с отношением детей разных времен к данной теореме. Создать проект.

7 слайд

Описание слайда:

Ход исследования Биография Пифагора. Заповеди и афоризмы Пифагора. Теорема Пифагора. История теоремы. Почему «пифагоровы штаны во все стороны равны»? Различные доказательства теоремы Пифагора другими учеными. Применение теоремы Пифагора. Опрос. Вывод.

8 слайд

Описание слайда:

Пифагор – кто же он такой? Пифагор Самосский (580 - 500 до н. э.) древнегреческий математик и философ-идеалист. Родился на острове Самос. Получил хорошее образование. По преданию Пифагор, чтобы ознакомиться с мудростью восточных ученых, выехал в Египет и прожил там 22 года. Хорошо овладев всеми науками египтян, в том числе и математикой, он переехал в Вавилон, где прожил 12 лет и ознакомился с научными знаниями вавилонских жрецов. Предания приписывают Пифагору посещение и Индии. Это очень вероятно, так как Иония и Индия тогда имели торговые связи. Возвратившись на родину (ок. 530 г. до н. э.), Пифагор попытался организовать свою философскую школу. Однако по неизвестным причинам он вскоре оставляет Самос и селится в Кротоне (греческой колонии на севере Италии). Здесь Пифагору удалось организовать свою школу, которая действовала почти тридцать лет. Школа Пифагора, или, как ее еще называют, пифагорейский союз, была одновременно и философской школой, и политической партией, и религиозным братством. Статус пифагорейского союза был очень суровым. По своим философским взглядам Пифагор был идеалистом, защитником интересов рабовладельческой аристократии. Возможно, в этом и заключалась причина его отъезда из Самоса, так как в Ионии очень большое влияние имели сторонники демократических взглядов. В общественных вопросах под "порядком" пифагорейцы понимали господство аристократов. Древнегреческую демократию они осуждали. Пифагорейская философия была примитивной попыткой обосновать господство рабовладельческой аристократии. В конце V в. до н. э. в Греции и ее колониях прокатилась волна демократического движения. Победила демократия в Кротоне. Пифагор вместе с учениками оставляет Кротон и уезжает в Тарент, а затем в Метапонт. Прибытие пифагорейцев в Метапонт совпало со вспышкой там народного восстания. В одной из ночных стычек погиб почти девяностолетний Пифагор. Его школа прекратила свое существование. Ученики Пифагора, спасаясь от преследований, расселились по всей Греции и ее колониям. Добывая себе средства к существованию, они организовывали школы, в которых преподавали главным образом арифметику и геометрию. Сведения об их достижениях содержатся в сочинениях позднейших учёных - Платона, Аристотеля и др.

9 слайд

Описание слайда:

Заповеди и афоризмы Пифагора Мысль - превыше всего между людьми на земле. Не садись на хлебную меру (т. е. не живи праздно). Уходя, не оглядывайся (т. е. перед смертью не цепляйся за жизнь). По торной дороге не ходи (т. е. следуй не мнениям толпы, а мнениям немногих понимающих). Ласточек в доме не держи (т. е. не принимай гостей болтливых и не сдержанных на язык). Будь с тем, кто ношу взваливает, не будь с тем, кто ношу сваливает (т. е. поощряй людей не к праздности, а к добродетели, к труду). На поле жизни, подобно сеятелю, ходи ровным и постоянным шагом. Истинное отечество там, где есть благие нравы. Не будь членом учёного общества: самые мудрые, составляя общество, делаются простолюдинами. Почитай священными числа, вес и меру, как чад изящного равенства. Измеряй свои желания, взвешивай свои мысли, исчисляй свои слова. Ничему не удивляйся: удивление произвело богов.

10 слайд

Описание слайда:

Формулировка теоремы. В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

11 слайд

Описание слайда:

Доказательства теоремы. На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема Пифагора является единственной теоремой со столь внушительным числом доказательств. Разумеется, все их можно разбить на малое число классов. Самые известные из них: доказательства методом площадей, аксиоматические и экзотические доказательства.

12 слайд

Описание слайда:

Теорема Пифагора Доказательство Дан прямоугольный треугольник с катетами a, b и гипотенузой c. Докажем, что c² = a² + b² Достроим треугольник до квадрата со стороной a + b. Площадь S этого квадрата равна (a + b)². С другой стороны, квадрат составлен из четырех равных прямоугольных треугольников, S каждого из которых равна ½ a b, и квадрата со стороной c. S = 4 · ½ a b + c² = 2 a b + c² Таким образом, (a + b)² = 2 a b + c², откуда c² = a² + b² c c c c с а b

13 слайд

Описание слайда:

История теоремы Пифагора Интересна история теоремы Пифагора. Хотя эта теорема и связывается с именем Пифагора, она была известна задолго до него. В вавилонских текстах эта теорема встречается за 1200 лет до Пифагора. Возможно, что тогда еще не знали ее доказательства, а само соотношение между гипотенузой и катетами было установлено опытным путем на основе измерений. Пифагор, по-видимому, нашел доказательство этого соотношения. Сохранилось древнее предание, что в честь своего открытия Пифагор принес в жертву богам быка, а по другим свидетельствам – даже сто быков. На протяжении последующих веков были найдены различные другие доказательства теоремы Пифагора. В настоящее время их насчитывается более ста, но наиболее популярна теорема с построением квадрата с помощью данного прямоугольного треугольника.

14 слайд

Описание слайда:

Теорема в Древнем Китае "Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4".

15 слайд

Описание слайда:

Теорема в Древнем Египте Кантор (крупнейший немецкий историк математики) считает, что равенство 3 ² + 4 ² = 5² было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета(согласно папирусу 6619 Берлинского музея). По мнению Кантора гарпедонапты, или "натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5.

16 слайд

Описание слайда:

О теореме в Вавилонии «Заслугой первых греческих математиков, таких как Фалес, Пифагор и пифагорейцы, является не открытие математики, но ее систематизация и обоснование. В их руках вычислительные рецепты, основанные на смутных представлениях, превратились в точную науку."

17 слайд

Описание слайда:

Почему «пифагоровы штаны во все стороны равны»? В течение двух тысячелетий наиболее распространенным доказательством теоремы Пифагора было придуманное Евклидом. Оно помещено в его знаменитой книге «Начала». Евклид опускал высоту СН из вершины прямого угла на гипотенузу и доказывал, что её продолжение делит достроенный на гипотенузе квадрат на два прямоугольника, площади которых равны площадям соответствующих квадратов, построенных на катетах. Чертёж, применяемый при доказательстве этой теоремы, в шутку называют «пифагоровы штаны». В течение долгого времени он считался одним из символов математической науки.

18 слайд

Описание слайда:

Отношение детей древности к Доказательство теоремы Пифагора учащиеся средних веков считали очень трудным. Слабые ученики, заучившие теоремы наизусть, без понимания, и прозванные поэтому «ослами», были не в состоянии преодолеть теорему Пифагора, служившую для них вроде непреодолимого моста. Из-за чертежей, сопровождающих теорему Пифагора, учащиеся называли ее также «ветряной мельницей», составляли стихи, вроде «Пифагоровы штаны на все стороны равны», рисовали карикатуры.

19 слайд

Описание слайда:

Доказательства теоремы Простейшее доказательство теоремы получается в случае равнобедренного прямоугольного треугольника. В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников, чтобы убедиться в справедливости теоремы. Например, для треугольника ABC: квадрат, построенный на гипотенузе АС, содержит 4 исходных треугольника, а квадраты, построенные на катетах,- по два.

20 слайд

Описание слайда:

« Стул невесты » На рисунке квадраты, построенные на катетах, размещены ступенями один рядом с другим. Эту фигуру, которая встречается в доказательствах, датируемых не позднее, чем 9 столетием н. э., индусы называли "стулом невесты".

21 слайд

Описание слайда:

Применение теоремы Пифагора В настоящее время всеобщее признание получило то, что успех развития многих областей науки и техники зависит от развития различных направлений математики. Важным условием повышения эффективности производства является широкое внедрение математических методов в технику и народное хозяйство, что предполагает создание новых, эффективных методов качественного и количественного исследования, которые позволяют решать задачи, выдвигаемые практикой.

22 слайд

Описание слайда:

Применение теоремы в строительстве В зданиях готического и романского стиля верхние части окон расчленяются каменными ребрами, которые не только играют роль орнамента, но и способствуют прочности окон.

23 слайд

Описание слайда:

24 слайд

Описание слайда:

Исторические задачи Для крепления мачты нужно установить 4 троса. Один конец каждого троса должен крепиться на высоте 12 м, другой на земле на расстоянии 5 м от мачты. Хватит ли 50 м троса для крепления мачты?