heim · Installation · So dividieren Sie Logarithmen mit unterschiedlichen Basen. Logarithmische Ausdrücke. Beispiele

So dividieren Sie Logarithmen mit unterschiedlichen Basen. Logarithmische Ausdrücke. Beispiele

Die Wahrung Ihrer Privatsphäre ist uns wichtig. Aus diesem Grund haben wir eine Datenschutzrichtlinie entwickelt, die beschreibt, wie wir Ihre Daten verwenden und speichern. Bitte lesen Sie unsere Datenschutzpraktiken durch und teilen Sie uns mit, wenn Sie Fragen haben.

Erhebung und Nutzung personenbezogener Daten

Unter personenbezogenen Daten versteht man Daten, die dazu genutzt werden können, eine bestimmte Person zu identifizieren oder mit ihr in Kontakt zu treten.

Sie können jederzeit um die Angabe Ihrer persönlichen Daten gebeten werden, wenn Sie mit uns Kontakt aufnehmen.

Nachfolgend finden Sie einige Beispiele für die Arten personenbezogener Daten, die wir möglicherweise sammeln, und wie wir diese Informationen verwenden können.

Welche personenbezogenen Daten erfassen wir:

  • Wenn Sie auf der Website eine Bewerbung einreichen, erfassen wir möglicherweise verschiedene Informationen, einschließlich Ihres Namens, Ihrer Telefonnummer, Ihrer E-Mail-Adresse usw.

Wie wir Ihre persönlichen Daten verwenden:

  • Die von uns erfassten personenbezogenen Daten ermöglichen es uns, Sie mit einzigartigen Angeboten, Werbeaktionen und anderen Veranstaltungen sowie bevorstehenden Veranstaltungen zu kontaktieren.
  • Von Zeit zu Zeit können wir Ihre persönlichen Daten verwenden, um wichtige Mitteilungen und Mitteilungen zu versenden.
  • Wir können personenbezogene Daten auch für interne Zwecke verwenden, beispielsweise zur Durchführung von Audits, Datenanalysen und verschiedenen Forschungsarbeiten, um die von uns bereitgestellten Dienste zu verbessern und Ihnen Empfehlungen zu unseren Diensten zu geben.
  • Wenn Sie an einer Verlosung, einem Wettbewerb oder einer ähnlichen Aktion teilnehmen, können wir die von Ihnen bereitgestellten Informationen zur Verwaltung solcher Programme verwenden.

Weitergabe von Informationen an Dritte

Wir geben die von Ihnen erhaltenen Informationen nicht an Dritte weiter.

Ausnahmen:

  • Wenn es erforderlich ist – in Übereinstimmung mit dem Gesetz, dem Gerichtsverfahren, in Gerichtsverfahren und/oder auf der Grundlage öffentlicher Anfragen oder Anfragen von Regierungsstellen in der Russischen Föderation – Ihre personenbezogenen Daten offenzulegen. Wir können auch Informationen über Sie offenlegen, wenn wir zu dem Schluss kommen, dass eine solche Offenlegung aus Sicherheits-, Strafverfolgungs- oder anderen Gründen von öffentlicher Bedeutung notwendig oder angemessen ist.
  • Im Falle einer Umstrukturierung, Fusion oder eines Verkaufs können wir die von uns erfassten personenbezogenen Daten an den jeweiligen Nachfolger-Dritten weitergeben.

Schutz personenbezogener Daten

Wir treffen Vorkehrungen – einschließlich administrativer, technischer und physischer –, um Ihre persönlichen Daten vor Verlust, Diebstahl und Missbrauch sowie vor unbefugtem Zugriff, Offenlegung, Änderung und Zerstörung zu schützen.

Respektieren Sie Ihre Privatsphäre auf Unternehmensebene

Um sicherzustellen, dass Ihre persönlichen Daten sicher sind, kommunizieren wir Datenschutz- und Sicherheitsstandards an unsere Mitarbeiter und setzen Datenschutzpraktiken strikt durch.

Logarithmus der Zahl b (b > 0) zur Basis a (a > 0, a ≠ 1)– Exponent, auf den die Zahl a erhöht werden muss, um b zu erhalten.

Der Logarithmus zur Basis 10 von b kann geschrieben werden als log(b) und der Logarithmus zur Basis e (natürlicher Logarithmus) ist ln(b).

Wird häufig bei der Lösung von Problemen mit Logarithmen verwendet:

Eigenschaften von Logarithmen

Es gibt vier Haupt Eigenschaften von Logarithmen.

Sei a > 0, a ≠ 1, x > 0 und y > 0.

Eigenschaft 1. Logarithmus des Produkts

Logarithmus des Produkts gleich der Summe der Logarithmen:

log a (x ⋅ y) = log a x + log a y

Eigenschaft 2. Logarithmus des Quotienten

Logarithmus des Quotienten gleich der Differenz der Logarithmen:

log a (x / y) = log a x – log a y

Eigenschaft 3. Logarithmus der Potenz

Logarithmus des Grades gleich dem Produkt aus Potenz und Logarithmus:

Liegt die Basis des Logarithmus im Grad, gilt eine andere Formel:

Eigenschaft 4. Logarithmus der Wurzel

Diese Eigenschaft lässt sich aus der Eigenschaft des Logarithmus einer Potenz ermitteln, da die n-te Wurzel der Potenz gleich der Potenz von 1/n ist:

Formel zur Umrechnung eines Logarithmus einer Basis in einen Logarithmus einer anderen Basis

Diese Formel wird auch häufig bei der Lösung verschiedener Logarithmenaufgaben verwendet:

Besonderer Fall:

Vergleich von Logarithmen (Ungleichungen)

Lassen Sie uns zwei Funktionen f(x) und g(x) unter Logarithmen mit den gleichen Basen haben und zwischen ihnen gibt es ein Ungleichheitszeichen:

Um sie zu vergleichen, müssen Sie sich zunächst die Basis der Logarithmen a ansehen:

  • Wenn a > 0, dann ist f(x) > g(x) > 0
  • Wenn 0< a < 1, то 0 < f(x) < g(x)

So lösen Sie Probleme mit Logarithmen: Beispiele

Probleme mit Logarithmen in der Einheitlichen Staatsprüfung in Mathematik für die 11. Klasse in Aufgabe 5 und Aufgabe 7 enthalten sind, finden Sie Aufgaben mit Lösungen auf unserer Website in den entsprechenden Rubriken. Auch Aufgaben mit Logarithmen finden sich in der Mathe-Aufgabenbank. Sie können alle Beispiele finden, indem Sie die Website durchsuchen.

Was ist ein Logarithmus?

Logarithmen gelten seit jeher als schwieriges Thema im schulischen Mathematikunterricht. Es gibt viele verschiedene Definitionen des Logarithmus, aber aus irgendeinem Grund verwenden die meisten Lehrbücher die komplexeste und erfolgloseste davon.

Wir werden den Logarithmus einfach und klar definieren. Dazu erstellen wir eine Tabelle:

Wir haben also Zweierpotenzen.

Logarithmen – Eigenschaften, Formeln, Lösungsansätze

Wenn Sie die Zahl aus der unteren Zeile nehmen, können Sie leicht die Potenz ermitteln, mit der Sie zwei erhöhen müssen, um diese Zahl zu erhalten. Um beispielsweise 16 zu erhalten, müssen Sie zwei auf die vierte Potenz erhöhen. Und um 64 zu erhalten, müssen Sie zwei auf die sechste Potenz erhöhen. Dies ist aus der Tabelle ersichtlich.

Und nun eigentlich die Definition des Logarithmus:

Die Basis a des Arguments x ist die Potenz, mit der die Zahl a erhöht werden muss, um die Zahl x zu erhalten.

Bezeichnung: log a x = b, wobei a die Basis, x das Argument und b das ist, was der Logarithmus tatsächlich ist.

Zum Beispiel: 2 3 = 8 ⇒log 2 8 = 3 (der Logarithmus zur Basis 2 von 8 ist drei, weil 2 3 = 8). Mit dem gleichen Erfolg ist log 2 64 = 6, da 2 6 = 64.

Die Operation, den Logarithmus einer Zahl zu einer gegebenen Basis zu ermitteln, wird aufgerufen. Fügen wir also eine neue Zeile zu unserer Tabelle hinzu:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log 2 2 = 1 log 2 4 = 2 log 2 8 = 3 log 2 16 = 4 log 2 32 = 5 log 2 64 = 6

Leider lassen sich nicht alle Logarithmen so einfach berechnen. Versuchen Sie beispielsweise, log 2 5 zu finden. Die Zahl 5 ist nicht in der Tabelle, aber die Logik schreibt vor, dass der Logarithmus irgendwo auf dem Intervall liegen wird. Weil 2 2< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Solche Zahlen nennt man irrational: Die Zahlen nach dem Komma können bis ins Unendliche geschrieben werden und wiederholen sich nie. Sollte sich herausstellen, dass der Logarithmus irrational ist, belässt man es besser dabei: log 2 5, log 3 8, log 5 100.

Es ist wichtig zu verstehen, dass ein Logarithmus ein Ausdruck mit zwei Variablen (der Basis und dem Argument) ist. Zunächst verwechseln viele Menschen die Grundlage und das Argument. Um ärgerliche Missverständnisse zu vermeiden, schauen Sie sich einfach das Bild an:

Vor uns liegt nichts weiter als die Definition eines Logarithmus. Erinnern: Logarithmus ist eine Potenz, in die die Basis eingebaut werden muss, um ein Argument zu erhalten. Es ist die Basis, die zur Potenz erhoben wird – sie ist im Bild rot hervorgehoben. Es stellt sich heraus, dass die Basis immer unten ist! Ich erzähle meinen Schülern diese wunderbare Regel gleich in der ersten Unterrichtsstunde – und es entsteht keine Verwirrung.

So zählen Sie Logarithmen

Wir haben die Definition herausgefunden – jetzt müssen wir nur noch lernen, wie man Logarithmen zählt, d. h. Entfernen Sie das „Log“-Schild. Zunächst stellen wir fest, dass sich aus der Definition zwei wichtige Tatsachen ergeben:

  1. Das Argument und die Basis müssen immer größer als Null sein. Dies folgt aus der Definition eines Grades durch einen rationalen Exponenten, auf den die Definition eines Logarithmus reduziert wird.
  2. Die Basis muss von Eins verschieden sein, da Eins bis zu jedem Grad immer noch Eins bleibt. Aus diesem Grund ist die Frage „zu welcher Macht muss man erhoben werden, um zwei zu bekommen“ bedeutungslos. Einen solchen Abschluss gibt es nicht!

Solche Einschränkungen nennt man Bereich akzeptabler Werte(ODZ). Es stellt sich heraus, dass die ODZ des Logarithmus so aussieht: log a x = b ⇒x > 0, a > 0, a ≠ 1.

Beachten Sie, dass es keine Einschränkungen für die Zahl b (den Wert des Logarithmus) gibt. Beispielsweise kann der Logarithmus durchaus negativ sein: log 2 0,5 = −1, weil 0,5 = 2 −1.

Allerdings betrachten wir jetzt nur numerische Ausdrücke, bei denen es nicht erforderlich ist, die VA des Logarithmus zu kennen. Alle Einschränkungen wurden von den Problemautoren bereits berücksichtigt. Wenn jedoch logarithmische Gleichungen und Ungleichungen ins Spiel kommen, werden DL-Anforderungen obligatorisch. Schließlich können Basis und Argument sehr starke Konstruktionen enthalten, die nicht unbedingt den oben genannten Einschränkungen entsprechen.

Schauen wir uns nun das allgemeine Schema zur Berechnung von Logarithmen an. Es besteht aus drei Schritten:

  1. Drücken Sie die Basis a und das Argument x als Potenz aus, deren minimal mögliche Basis größer als eins ist. Unterwegs ist es besser, auf Dezimalstellen zu verzichten;
  2. Lösen Sie die Gleichung für die Variable b: x = a b ;
  3. Die resultierende Zahl b wird die Antwort sein.

Das ist alles! Sollte sich herausstellen, dass der Logarithmus irrational ist, wird dies bereits im ersten Schritt sichtbar. Die Anforderung, dass die Basis größer als eins sein muss, ist sehr wichtig: Dies verringert die Fehlerwahrscheinlichkeit und vereinfacht die Berechnungen erheblich. Das Gleiche gilt für Dezimalbrüche: Wenn Sie sie sofort in gewöhnliche Brüche umwandeln, treten viel weniger Fehler auf.

Sehen wir uns anhand konkreter Beispiele an, wie dieses Schema funktioniert:

Aufgabe. Berechnen Sie den Logarithmus: log 5 25

  1. Stellen wir uns die Basis und das Argument als eine Fünferpotenz vor: 5 = 5 1 ; 25 = 5 2 ;
  2. Lassen Sie uns die Gleichung erstellen und lösen:
    log 5 25 = b ⇒(5 1) b = 5 2 ⇒5 b = 5 2 ⇒ b = 2;

  3. Wir erhielten die Antwort: 2.

Aufgabe. Berechnen Sie den Logarithmus:

Aufgabe. Berechnen Sie den Logarithmus: log 4 64

  1. Stellen wir uns Basis und Argument als Zweierpotenz vor: 4 = 2 2 ; 64 = 2 6 ;
  2. Lassen Sie uns die Gleichung erstellen und lösen:
    log 4 64 = b ⇒(2 2) b = 2 6 ⇒2 2b = 2 6 ⇒2b = 6 ⇒ b = 3;
  3. Wir erhielten die Antwort: 3.

Aufgabe. Berechnen Sie den Logarithmus: log 16 1

  1. Stellen wir uns Basis und Argument als Zweierpotenz vor: 16 = 2 4 ; 1 = 2 0 ;
  2. Lassen Sie uns die Gleichung erstellen und lösen:
    log 16 1 = b ⇒(2 4) b = 2 0 ⇒2 4b = 2 0 ⇒4b = 0 ⇒ b = 0;
  3. Wir haben die Antwort erhalten: 0.

Aufgabe. Berechnen Sie den Logarithmus: log 7 14

  1. Stellen wir uns die Basis und das Argument als eine Siebenerpotenz vor: 7 = 7 1 ; 14 kann nicht als Siebenerpotenz dargestellt werden, da 7 1< 14 < 7 2 ;
  2. Aus dem vorherigen Absatz folgt, dass der Logarithmus nicht zählt;
  3. Die Antwort ist keine Änderung: Protokoll 7 14.

Eine kleine Anmerkung zum letzten Beispiel. Wie kann man sicher sein, dass eine Zahl keine exakte Potenz einer anderen Zahl ist? Es ist ganz einfach – faktorisieren Sie es einfach in Primfaktoren. Wenn die Erweiterung mindestens zwei unterschiedliche Faktoren aufweist, ist die Zahl keine exakte Potenz.

Aufgabe. Finden Sie heraus, ob es sich bei den Zahlen um exakte Potenzen handelt: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - exakter Grad, weil es gibt nur einen Multiplikator;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - ist keine exakte Potenz, da es zwei Faktoren gibt: 3 und 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - exakter Grad;
35 = 7 · 5 – wiederum keine exakte Potenz;
14 = 7 · 2 – wiederum kein exakter Grad;

Beachten Sie auch, dass die Primzahlen selbst immer exakte Potenzen ihrer selbst sind.

Dezimaler Logarithmus

Einige Logarithmen sind so häufig, dass sie einen besonderen Namen und ein besonderes Symbol haben.

des Arguments x ist der Logarithmus zur Basis 10, d.h. Die Potenz, mit der die Zahl 10 erhöht werden muss, um die Zahl x zu erhalten. Bezeichnung: lg x.

Beispiel: log 10 = 1; lg 100 = 2; lg 1000 = 3 - usw.

Wenn in einem Lehrbuch von nun an ein Satz wie „Finde lg 0,01“ auftaucht, sollten Sie wissen, dass es sich hierbei nicht um einen Tippfehler handelt. Dies ist ein dezimaler Logarithmus. Wenn Sie mit dieser Notation jedoch nicht vertraut sind, können Sie sie jederzeit umschreiben:
log x = log 10 x

Alles, was für gewöhnliche Logarithmen gilt, gilt auch für dezimale Logarithmen.

Natürlicher Logarithmus

Es gibt einen weiteren Logarithmus, der eine eigene Bezeichnung hat. In mancher Hinsicht ist es sogar noch wichtiger als die Dezimalzahl. Wir sprechen vom natürlichen Logarithmus.

des Arguments x ist der Logarithmus zur Basis e, d. h. die Potenz, mit der die Zahl e erhöht werden muss, um die Zahl x zu erhalten. Bezeichnung: ln x.

Viele Leute werden fragen: Was ist die Zahl e? Dies ist eine irrationale Zahl; ihr genauer Wert kann nicht gefunden und aufgeschrieben werden. Ich nenne nur die ersten Zahlen:
e = 2,718281828459…

Wir werden nicht im Detail darauf eingehen, was diese Nummer ist und warum sie benötigt wird. Denken Sie daran, dass e die Basis des natürlichen Logarithmus ist:
ln x = log e x

Somit ist ln e = 1; ln e 2 = 2; ln e 16 = 16 - usw. Andererseits ist ln 2 eine irrationale Zahl. Im Allgemeinen ist der natürliche Logarithmus jeder rationalen Zahl irrational. Außer natürlich einer: ln 1 = 0.

Für natürliche Logarithmen gelten alle Regeln, die auch für gewöhnliche Logarithmen gelten.

Siehe auch:

Logarithmus. Eigenschaften des Logarithmus (Potenz des Logarithmus).

Wie stellt man eine Zahl als Logarithmus dar?

Wir verwenden die Definition des Logarithmus.

Ein Logarithmus ist ein Exponent, auf den die Basis erhöht werden muss, um die Zahl unter dem Logarithmuszeichen zu erhalten.

Um also eine bestimmte Zahl c als Logarithmus zur Basis a darzustellen, müssen Sie eine Potenz mit derselben Basis wie die Basis des Logarithmus unter das Vorzeichen des Logarithmus setzen und diese Zahl c als Exponenten schreiben:

Absolut jede Zahl kann als Logarithmus dargestellt werden – positiv, negativ, ganzzahlig, gebrochen, rational, irrational:

Um a und c unter stressigen Bedingungen eines Tests oder einer Prüfung nicht zu verwechseln, können Sie die folgende Merkregel verwenden:

Was unten ist, geht nach unten, was oben ist, geht nach oben.

Beispielsweise müssen Sie die Zahl 2 als Logarithmus zur Basis 3 darstellen.

Wir haben zwei Zahlen – 2 und 3. Diese Zahlen sind die Basis und der Exponent, die wir unter dem Vorzeichen des Logarithmus schreiben. Es bleibt zu bestimmen, welche dieser Zahlen auf die Basis des Grades und welche auf den Exponenten hin geschrieben werden sollen.

Die Basis 3 in der Notation eines Logarithmus liegt unten, was bedeutet, dass wir, wenn wir zwei als Logarithmus zur Basis 3 darstellen, auch 3 zur Basis hin schreiben.

2 ist höher als drei. Und in der Schreibweise des Grades zwei schreiben wir über die drei, also als Exponenten:

Logarithmen. Erste Ebene.

Logarithmen

Logarithmus positive Zahl B bezogen auf A, Wo a > 0, a ≠ 1, heißt der Exponent, auf den die Zahl erhöht werden muss A, um zu bekommen B.

Definition von Logarithmus kann kurz so geschrieben werden:

Diese Gleichheit gilt für b > 0, a > 0, a ≠ 1. Es heißt normalerweise logarithmische Identität.
Die Aktion, den Logarithmus einer Zahl zu ermitteln, wird aufgerufen durch Logarithmus.

Eigenschaften von Logarithmen:

Logarithmus des Produkts:

Logarithmus des Quotienten:

Ersetzen der Logarithmusbasis:

Logarithmus des Grades:

Logarithmus der Wurzel:

Logarithmus mit Potenzbasis:





Dezimale und natürliche Logarithmen.

Dezimaler Logarithmus Zahlen rufen den Logarithmus dieser Zahl zur Basis 10 auf und schreiben   lg B
Natürlicher Logarithmus Zahlen werden als Logarithmus dieser Zahl zur Basis bezeichnet e, Wo e- eine irrationale Zahl, die ungefähr 2,7 entspricht. Gleichzeitig schreiben sie ln B.

Weitere Hinweise zu Algebra und Geometrie

Grundlegende Eigenschaften von Logarithmen

Grundlegende Eigenschaften von Logarithmen

Logarithmen können wie alle Zahlen auf jede Art addiert, subtrahiert und transformiert werden. Da es sich bei Logarithmen aber nicht gerade um gewöhnliche Zahlen handelt, gibt es hier Regeln, die man nennt Haupteigenschaften.

Diese Regeln müssen Sie unbedingt kennen – ohne sie lässt sich kein einziges ernstes logarithmisches Problem lösen. Darüber hinaus gibt es nur sehr wenige davon – Sie können alles an einem Tag lernen. Also lasst uns anfangen.

Logarithmen addieren und subtrahieren

Betrachten Sie zwei Logarithmen mit denselben Basen: log a x und log a y. Dann können sie addiert und subtrahiert werden und:

  1. log a x + log a y = log a (x y);
  2. log a x − log a y = log a (x: y).

Die Summe der Logarithmen ist also gleich dem Logarithmus des Produkts und die Differenz ist gleich dem Logarithmus des Quotienten. Bitte beachten Sie: Der entscheidende Punkt hier ist identische Gründe. Wenn die Gründe unterschiedlich sind, funktionieren diese Regeln nicht!

Diese Formeln helfen Ihnen, einen logarithmischen Ausdruck zu berechnen, auch wenn seine einzelnen Teile nicht berücksichtigt werden (siehe Lektion „Was ist ein Logarithmus“). Schauen Sie sich die Beispiele an und sehen Sie:

Protokoll 6 4 + Protokoll 6 9.

Da Logarithmen die gleichen Basen haben, verwenden wir die Summenformel:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Aufgabe. Finden Sie den Wert des Ausdrucks: log 2 48 − log 2 3.

Die Grundlagen sind die gleichen, wir verwenden die Differenzformel:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Aufgabe. Finden Sie den Wert des Ausdrucks: log 3 135 − log 3 5.

Auch hier sind die Grundlagen dieselben, also haben wir:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Wie Sie sehen, bestehen die ursprünglichen Ausdrücke aus „schlechten“ Logarithmen, die nicht separat berechnet werden. Aber nach den Transformationen erhält man ganz normale Zahlen. Viele Tests basieren auf dieser Tatsache. Ja, im Einheitlichen Staatsexamen werden prüfungsähnliche Ausdrücke in aller Ernsthaftigkeit (manchmal praktisch ohne Änderungen) angeboten.

Extrahieren des Exponenten aus dem Logarithmus

Jetzt machen wir die Aufgabe etwas komplizierter. Was ist, wenn die Basis oder das Argument eines Logarithmus eine Potenz ist? Dann kann der Exponent dieses Grades nach folgenden Regeln aus dem Vorzeichen des Logarithmus entnommen werden:

Es ist leicht zu erkennen, dass die letzte Regel den ersten beiden folgt. Aber es ist trotzdem besser, sich daran zu erinnern – in manchen Fällen wird es den Rechenaufwand erheblich reduzieren.

Alle diese Regeln machen natürlich Sinn, wenn die ODZ des Logarithmus beachtet wird: a > 0, a ≠ 1, x > 0. Und noch etwas: Lernen Sie, alle Formeln nicht nur von links nach rechts anzuwenden, sondern auch umgekehrt , d.h. Sie können die Zahlen vor dem Logarithmuszeichen in den Logarithmus selbst eingeben.

So lösen Sie Logarithmen

Dies wird am häufigsten benötigt.

Aufgabe. Finden Sie den Wert des Ausdrucks: log 7 49 6 .

Lassen Sie uns den Grad im Argument loswerden, indem wir die erste Formel verwenden:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Aufgabe. Finden Sie die Bedeutung des Ausdrucks:

Beachten Sie, dass der Nenner einen Logarithmus enthält, dessen Basis und Argument exakte Potenzen sind: 16 = 2 4 ; 49 = 7 2. Wir haben:

Ich denke, das letzte Beispiel bedarf einer Klarstellung. Wo sind die Logarithmen geblieben? Bis zum allerletzten Moment arbeiten wir nur mit dem Nenner. Wir stellten die Basis und das Argument des dort stehenden Logarithmus in Form von Potenzen dar und entfernten die Exponenten – wir erhielten einen „dreistöckigen“ Bruch.

Schauen wir uns nun den Hauptbruch an. Zähler und Nenner enthalten die gleiche Zahl: log 2 7. Da log 2 7 ≠ 0 ist, können wir den Bruch reduzieren – 2/4 bleiben im Nenner. Nach den Regeln der Arithmetik lässt sich die Vier auf den Zähler übertragen, was auch geschehen ist. Das Ergebnis war die Antwort: 2.

Übergang zu einer neuen Stiftung

Als ich über die Regeln zum Addieren und Subtrahieren von Logarithmen sprach, habe ich ausdrücklich betont, dass diese nur mit den gleichen Basen funktionieren. Was ist, wenn die Gründe unterschiedlich sind? Was ist, wenn es sich nicht um exakte Potenzen derselben Zahl handelt?

Hier helfen Formeln für den Übergang zu einer neuen Stiftung. Formulieren wir sie in Form eines Theorems:

Gegeben sei der Logarithmus log a x. Dann gilt für jede Zahl c mit c > 0 und c ≠ 1 die Gleichheit:

Insbesondere wenn wir c = x setzen, erhalten wir:

Aus der zweiten Formel folgt, dass Basis und Argument des Logarithmus vertauscht werden können, allerdings wird in diesem Fall der gesamte Ausdruck „umgedreht“, also der Logarithmus erscheint im Nenner.

Diese Formeln kommen selten in gewöhnlichen numerischen Ausdrücken vor. Wie praktisch sie sind, lässt sich nur bei der Lösung logarithmischer Gleichungen und Ungleichungen beurteilen.

Es gibt jedoch Probleme, die nur durch den Umzug in eine neue Stiftung gelöst werden können. Schauen wir uns einige davon an:

Aufgabe. Finden Sie den Wert des Ausdrucks: log 5 16 log 2 25.

Beachten Sie, dass die Argumente beider Logarithmen exakte Potenzen enthalten. Nehmen wir die Indikatoren heraus: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

Lassen Sie uns nun den zweiten Logarithmus „umkehren“:

Da sich das Produkt beim Umordnen der Faktoren nicht ändert, haben wir in aller Ruhe vier und zwei multipliziert und uns dann mit Logarithmen beschäftigt.

Aufgabe. Finden Sie den Wert des Ausdrucks: log 9 100 lg 3.

Basis und Argument des ersten Logarithmus sind exakte Potenzen. Schreiben wir das auf und entfernen wir die Indikatoren:

Lassen Sie uns nun den dezimalen Logarithmus loswerden, indem wir zu einer neuen Basis wechseln:

Grundlegende logarithmische Identität

Im Lösungsprozess ist es oft notwendig, eine Zahl als Logarithmus zu einer gegebenen Basis darzustellen.

In diesem Fall helfen uns folgende Formeln:

Im ersten Fall wird die Zahl n zum Exponenten im Argument. Die Zahl n kann absolut alles sein, da es sich nur um einen Logarithmuswert handelt.

Die zweite Formel ist eigentlich eine paraphrasierte Definition. So heißt es: .

Was passiert eigentlich, wenn die Zahl b so potenziert wird, dass die Potenz von b die Zahl a ergibt? Das ist richtig: Das Ergebnis ist die gleiche Zahl a. Lesen Sie diesen Absatz noch einmal sorgfältig durch – viele Menschen bleiben dabei hängen.

Wie Formeln für den Übergang zu einer neuen Basis ist die grundlegende logarithmische Identität manchmal die einzig mögliche Lösung.

Aufgabe. Finden Sie die Bedeutung des Ausdrucks:

Beachten Sie, dass log 25 64 = log 5 8 – einfach das Quadrat aus der Basis und dem Argument des Logarithmus genommen hat. Unter Berücksichtigung der Regeln zur Potenzmultiplikation mit gleicher Basis erhalten wir:

Falls es jemand nicht weiß, das war eine echte Aufgabe aus dem Einheitlichen Staatsexamen :)

Logarithmische Einheit und logarithmischer Nullpunkt

Abschließend möchte ich zwei Identitäten nennen, die kaum als Eigenschaften bezeichnet werden können – vielmehr sind sie Konsequenzen der Definition des Logarithmus. Sie tauchen ständig in Problemen auf und bereiten überraschenderweise auch „fortgeschrittenen“ Studierenden Probleme.

  1. log a a = 1 ist. Denken Sie ein für alle Mal daran: Der Logarithmus zu jeder Basis a dieser Basis selbst ist gleich eins.
  2. log a 1 = 0 ist. Die Basis a kann alles sein, aber wenn das Argument eins enthält, ist der Logarithmus gleich Null! Denn a 0 = 1 ist eine direkte Folge der Definition.

Das sind alle Eigenschaften. Üben Sie unbedingt die Umsetzung! Laden Sie den Spickzettel zu Beginn der Lektion herunter, drucken Sie ihn aus und lösen Sie die Aufgaben.

Logarithmen können wie alle Zahlen auf jede Art addiert, subtrahiert und transformiert werden. Da es sich bei Logarithmen aber nicht gerade um gewöhnliche Zahlen handelt, gibt es hier Regeln, die man nennt Haupteigenschaften.

Diese Regeln müssen Sie unbedingt kennen – ohne sie lässt sich kein einziges ernstes logarithmisches Problem lösen. Darüber hinaus gibt es nur sehr wenige davon – Sie können alles an einem Tag lernen. Also lasst uns anfangen.

Logarithmen addieren und subtrahieren

Betrachten Sie zwei Logarithmen mit derselben Basis: log A X und protokollieren A j. Dann können sie addiert und subtrahiert werden und:

  1. Protokoll A X+ Protokoll A j=log A (X · j);
  2. Protokoll A X− log A j=log A (X : j).

Die Summe der Logarithmen ist also gleich dem Logarithmus des Produkts und die Differenz ist gleich dem Logarithmus des Quotienten. Bitte beachten Sie: Der entscheidende Punkt hier ist identische Gründe. Wenn die Gründe unterschiedlich sind, funktionieren diese Regeln nicht!

Diese Formeln helfen Ihnen, einen logarithmischen Ausdruck zu berechnen, auch wenn seine einzelnen Teile nicht berücksichtigt werden (siehe Lektion „Was ist ein Logarithmus“). Schauen Sie sich die Beispiele an und sehen Sie:

Protokoll 6 4 + Protokoll 6 9.

Da Logarithmen die gleichen Basen haben, verwenden wir die Summenformel:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Aufgabe. Finden Sie den Wert des Ausdrucks: log 2 48 − log 2 3.

Die Grundlagen sind die gleichen, wir verwenden die Differenzformel:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Aufgabe. Finden Sie den Wert des Ausdrucks: log 3 135 − log 3 5.

Auch hier sind die Grundlagen dieselben, also haben wir:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Wie Sie sehen, bestehen die ursprünglichen Ausdrücke aus „schlechten“ Logarithmen, die nicht separat berechnet werden. Aber nach den Transformationen erhält man ganz normale Zahlen. Viele Tests basieren auf dieser Tatsache. Ja, im Einheitlichen Staatsexamen werden prüfungsähnliche Ausdrücke in aller Ernsthaftigkeit (manchmal praktisch ohne Änderungen) angeboten.

Extrahieren des Exponenten aus dem Logarithmus

Jetzt machen wir die Aufgabe etwas komplizierter. Was ist, wenn die Basis oder das Argument eines Logarithmus eine Potenz ist? Dann kann der Exponent dieses Grades nach folgenden Regeln aus dem Vorzeichen des Logarithmus entnommen werden:

Es ist leicht zu erkennen, dass die letzte Regel den ersten beiden folgt. Aber es ist trotzdem besser, sich daran zu erinnern – in manchen Fällen wird es den Rechenaufwand erheblich reduzieren.

Alle diese Regeln machen natürlich Sinn, wenn die ODZ des Logarithmus beachtet wird: A > 0, A ≠ 1, X> 0. Und noch etwas: Lernen Sie, alle Formeln nicht nur von links nach rechts anzuwenden, sondern auch umgekehrt, d. h. Sie können die Zahlen vor dem Logarithmuszeichen in den Logarithmus selbst eingeben. Dies wird am häufigsten benötigt.

Aufgabe. Finden Sie den Wert des Ausdrucks: log 7 49 6 .

Lassen Sie uns den Grad im Argument loswerden, indem wir die erste Formel verwenden:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Aufgabe. Finden Sie die Bedeutung des Ausdrucks:

[Bildunterschrift]

Beachten Sie, dass der Nenner einen Logarithmus enthält, dessen Basis und Argument exakte Potenzen sind: 16 = 2 4 ; 49 = 7 2. Wir haben:

[Bildunterschrift]

Ich denke, das letzte Beispiel bedarf einer Klarstellung. Wo sind die Logarithmen geblieben? Bis zum allerletzten Moment arbeiten wir nur mit dem Nenner. Wir stellten die Basis und das Argument des dort stehenden Logarithmus in Form von Potenzen dar und entfernten die Exponenten – wir erhielten einen „dreistöckigen“ Bruch.

Schauen wir uns nun den Hauptbruch an. Zähler und Nenner enthalten die gleiche Zahl: log 2 7. Da log 2 7 ≠ 0 ist, können wir den Bruch reduzieren – 2/4 bleiben im Nenner. Nach den Regeln der Arithmetik lässt sich die Vier auf den Zähler übertragen, was auch geschehen ist. Das Ergebnis war die Antwort: 2.

Übergang zu einer neuen Stiftung

Als ich über die Regeln zum Addieren und Subtrahieren von Logarithmen sprach, habe ich ausdrücklich betont, dass diese nur mit den gleichen Basen funktionieren. Was ist, wenn die Gründe unterschiedlich sind? Was ist, wenn es sich nicht um exakte Potenzen derselben Zahl handelt?

Hier helfen Formeln für den Übergang zu einer neuen Stiftung. Formulieren wir sie in Form eines Theorems:

Gegeben sei der Logarithmus log A X. Dann für eine beliebige Zahl C so dass C> 0 und C≠ 1, die Gleichheit gilt:

[Bildunterschrift]

Insbesondere, wenn wir sagen C = X, wir bekommen:

[Bildunterschrift]

Aus der zweiten Formel folgt, dass Basis und Argument des Logarithmus vertauscht werden können, allerdings wird in diesem Fall der gesamte Ausdruck „umgedreht“, also der Logarithmus erscheint im Nenner.

Diese Formeln kommen selten in gewöhnlichen numerischen Ausdrücken vor. Wie praktisch sie sind, lässt sich nur bei der Lösung logarithmischer Gleichungen und Ungleichungen beurteilen.

Es gibt jedoch Probleme, die nur durch den Umzug in eine neue Stiftung gelöst werden können. Schauen wir uns einige davon an:

Aufgabe. Finden Sie den Wert des Ausdrucks: log 5 16 log 2 25.

Beachten Sie, dass die Argumente beider Logarithmen exakte Potenzen enthalten. Nehmen wir die Indikatoren heraus: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

Lassen Sie uns nun den zweiten Logarithmus „umkehren“:

[Bildunterschrift]

Da sich das Produkt beim Umordnen der Faktoren nicht ändert, haben wir in aller Ruhe vier und zwei multipliziert und uns dann mit Logarithmen beschäftigt.

Aufgabe. Finden Sie den Wert des Ausdrucks: log 9 100 lg 3.

Basis und Argument des ersten Logarithmus sind exakte Potenzen. Schreiben wir das auf und entfernen wir die Indikatoren:

[Bildunterschrift]

Lassen Sie uns nun den dezimalen Logarithmus loswerden, indem wir zu einer neuen Basis wechseln:

[Bildunterschrift]

Grundlegende logarithmische Identität

Im Lösungsprozess ist es oft notwendig, eine Zahl als Logarithmus zu einer gegebenen Basis darzustellen. In diesem Fall helfen uns folgende Formeln:

Im ersten Fall die Nummer N wird zu einem Indikator für den Stellenwert der Argumentation. Nummer N kann absolut alles sein, da es sich nur um einen Logarithmuswert handelt.

Die zweite Formel ist eigentlich eine paraphrasierte Definition. So nennt man es: die grundlegende logarithmische Identität.

Was passiert eigentlich, wenn die Zahl B auf eine solche Potenz erhöhen, dass die Zahl B zu dieser Potenz gibt die Zahl A? Das ist richtig: Sie erhalten dieselbe Nummer A. Lesen Sie diesen Absatz noch einmal sorgfältig durch – viele Menschen bleiben dabei hängen.

Wie Formeln für den Übergang zu einer neuen Basis ist die grundlegende logarithmische Identität manchmal die einzig mögliche Lösung.

Aufgabe. Finden Sie die Bedeutung des Ausdrucks:

[Bildunterschrift]

Beachten Sie, dass log 25 64 = log 5 8 – einfach das Quadrat aus der Basis und dem Argument des Logarithmus genommen hat. Unter Berücksichtigung der Regeln zur Potenzmultiplikation mit gleicher Basis erhalten wir:

[Bildunterschrift]

Falls es jemand nicht weiß, das war eine echte Aufgabe aus dem Einheitlichen Staatsexamen :)

Logarithmische Einheit und logarithmischer Nullpunkt

Abschließend möchte ich zwei Identitäten nennen, die kaum als Eigenschaften bezeichnet werden können – vielmehr sind sie Konsequenzen der Definition des Logarithmus. Sie tauchen ständig in Problemen auf und bereiten überraschenderweise auch „fortgeschrittenen“ Studierenden Probleme.

  1. Protokoll A A= 1 ist eine logarithmische Einheit. Denken Sie ein für alle Mal daran: Logarithmus zu jeder Basis A von dieser Basis aus ist gleich eins.
  2. Protokoll A 1 = 0 ist logarithmischer Nullpunkt. Base A kann alles sein, aber wenn das Argument eins enthält, ist der Logarithmus gleich Null! Weil A 0 = 1 ist eine direkte Konsequenz der Definition.

Das sind alle Eigenschaften. Üben Sie unbedingt die Umsetzung! Laden Sie den Spickzettel zu Beginn der Lektion herunter, drucken Sie ihn aus und lösen Sie die Aufgaben.

Logarithmische Ausdrücke, Lösungsbeispiele. In diesem Artikel werden wir uns mit Problemen im Zusammenhang mit der Lösung von Logarithmen befassen. Bei den Aufgaben geht es darum, die Bedeutung eines Ausdrucks herauszufinden. Es ist zu beachten, dass das Konzept des Logarithmus in vielen Aufgaben verwendet wird und es äußerst wichtig ist, seine Bedeutung zu verstehen. Was das Einheitliche Staatsexamen betrifft, wird der Logarithmus beim Lösen von Gleichungen, bei angewandten Problemen und auch bei Aufgaben im Zusammenhang mit dem Studium von Funktionen verwendet.

Lassen Sie uns Beispiele geben, um die eigentliche Bedeutung des Logarithmus zu verstehen:


Grundlegende logarithmische Identität:

Eigenschaften von Logarithmen, die man sich immer merken muss:

*Der Logarithmus des Produkts ist gleich der Summe der Logarithmen der Faktoren.

* * *

*Der Logarithmus eines Quotienten (Bruch) ist gleich der Differenz zwischen den Logarithmen der Faktoren.

* * *

*Der Logarithmus eines Exponenten ist gleich dem Produkt aus dem Exponenten und dem Logarithmus seiner Basis.

* * *

*Übergang zu einer neuen Stiftung

* * *

Weitere Eigenschaften:

* * *

Die Berechnung von Logarithmen hängt eng mit der Verwendung von Exponenteneigenschaften zusammen.

Lassen Sie uns einige davon auflisten:

Der Kern dieser Eigenschaft besteht darin, dass sich bei der Übertragung des Zählers auf den Nenner und umgekehrt das Vorzeichen des Exponenten in das Gegenteil ändert. Zum Beispiel:

Eine Folgerung aus dieser Eigenschaft:

* * *

Bei der Potenzierung bleibt die Basis gleich, die Exponenten werden jedoch multipliziert.

* * *

Wie Sie gesehen haben, ist das Konzept eines Logarithmus selbst einfach. Die Hauptsache ist, dass Sie eine gute Übung brauchen, die Ihnen eine gewisse Fähigkeit verleiht. Natürlich sind Formelkenntnisse erforderlich. Wenn die Fähigkeit zur Umrechnung elementarer Logarithmen nicht entwickelt ist, können Sie beim Lösen einfacher Aufgaben leicht einen Fehler machen.

Üben Sie, lösen Sie zunächst die einfachsten Beispiele aus dem Mathematikkurs und gehen Sie dann zu komplexeren über. In Zukunft werde ich auf jeden Fall zeigen, wie „hässliche“ Logarithmen gelöst werden; diese werden im Einheitlichen Staatsexamen nicht auftauchen, aber sie sind von Interesse, verpassen Sie sie nicht!

Das ist alles! Viel Glück!

Mit freundlichen Grüßen Alexander Krutitskikh

P.S.: Ich wäre Ihnen dankbar, wenn Sie mir in den sozialen Netzwerken von der Seite erzählen würden.

Wie Sie wissen, addieren sich bei der Multiplikation von Ausdrücken mit Potenzen immer deren Exponenten (a b *a c = a b+c). Dieses mathematische Gesetz wurde von Archimedes abgeleitet und später, im 8. Jahrhundert, erstellte der Mathematiker Virasen eine Tabelle ganzzahliger Exponenten. Sie dienten der weiteren Entdeckung der Logarithmen. Beispiele für die Verwendung dieser Funktion finden sich fast überall dort, wo Sie umständliche Multiplikationen durch einfache Addition vereinfachen müssen. Wenn Sie diesen Artikel 10 Minuten lang lesen, erklären wir Ihnen, was Logarithmen sind und wie man mit ihnen arbeitet. In einfacher und zugänglicher Sprache.

Definition in der Mathematik

Ein Logarithmus ist ein Ausdruck der folgenden Form: log a b=c, d. h. der Logarithmus einer beliebigen nicht negativen (d. h. positiven) Zahl „b“ zu ihrer Basis „a“ wird als Potenz „c“ betrachtet ” auf den die Basis „a“ angehoben werden muss, um letztlich den Wert „b“ zu erhalten. Lassen Sie uns den Logarithmus anhand von Beispielen analysieren. Nehmen wir an, es gibt einen Ausdruck log 2 8. Wie finde ich die Antwort? Es ist ganz einfach: Sie müssen eine solche Potenz finden, dass Sie von 2 bis zur erforderlichen Potenz 8 erhalten. Nachdem wir einige Berechnungen im Kopf durchgeführt haben, erhalten wir die Zahl 3! Und das stimmt, denn 2 hoch 3 ergibt eine 8.

Arten von Logarithmen

Für viele Schüler und Studenten erscheint dieses Thema kompliziert und unverständlich, aber tatsächlich sind Logarithmen nicht so beängstigend, die Hauptsache ist, ihre allgemeine Bedeutung zu verstehen und sich ihre Eigenschaften und einige Regeln zu merken. Es gibt drei verschiedene Arten logarithmischer Ausdrücke:

  1. Natürlicher Logarithmus ln a, wobei die Basis die Euler-Zahl (e = 2,7) ist.
  2. Dezimalzahl a, wobei die Basis 10 ist.
  3. Logarithmus einer beliebigen Zahl b zur Basis a>1.

Jeder von ihnen wird auf Standardmethode gelöst, einschließlich Vereinfachung, Reduktion und anschließender Reduktion auf einen einzelnen Logarithmus unter Verwendung logarithmischer Theoreme. Um die richtigen Werte von Logarithmen zu erhalten, sollten Sie sich beim Lösen deren Eigenschaften und die Reihenfolge der Aktionen merken.

Regeln und einige Einschränkungen

In der Mathematik gibt es mehrere Regeln und Einschränkungen, die als Axiom akzeptiert werden, das heißt, sie unterliegen keiner Diskussion und sind die Wahrheit. Beispielsweise ist es unmöglich, Zahlen durch Null zu dividieren, und es ist auch unmöglich, die gerade Wurzel negativer Zahlen zu ziehen. Logarithmen haben auch ihre eigenen Regeln, nach denen Sie leicht lernen können, auch mit langen und umfangreichen logarithmischen Ausdrücken zu arbeiten:

  • Die Basis „a“ muss immer größer als Null und nicht gleich 1 sein, sonst verliert der Ausdruck seine Bedeutung, da „1“ und „0“ in jedem Grad immer gleich ihren Werten sind;
  • Wenn a > 0, dann a b > 0, stellt sich heraus, dass „c“ ebenfalls größer als Null sein muss.

Wie löst man Logarithmen?

Zum Beispiel wird die Aufgabe gestellt, die Antwort auf die Gleichung 10 x = 100 zu finden. Das ist sehr einfach, Sie müssen eine Potenz wählen, indem Sie die Zahl zehn erhöhen, auf die wir 100 erhalten. Das ist natürlich 10 2 = 100.

Lassen Sie uns diesen Ausdruck nun in logarithmischer Form darstellen. Wir erhalten log 10 · 100 = 2. Beim Lösen von Logarithmen konvergieren praktisch alle Aktionen, um die Potenz zu finden, mit der die Basis des Logarithmus eingegeben werden muss, um eine gegebene Zahl zu erhalten.

Um den Wert eines unbekannten Grades genau zu bestimmen, müssen Sie lernen, mit einer Gradtabelle zu arbeiten. Es sieht aus wie das:

Wie Sie sehen, können einige Exponenten intuitiv erraten werden, wenn Sie über technisches Verständnis und Kenntnisse der Multiplikationstabelle verfügen. Für größere Werte benötigen Sie jedoch eine Leistungstabelle. Es kann auch von Personen verwendet werden, die überhaupt keine Ahnung von komplexen mathematischen Themen haben. Die linke Spalte enthält Zahlen (Basis a), die obere Zahlenreihe gibt den Wert der Potenz c an, mit der die Zahl a erhöht wird. Am Schnittpunkt enthalten die Zellen die Zahlenwerte, die die Antwort darstellen (a c =b). Nehmen wir zum Beispiel die allererste Zelle mit der Zahl 10 und quadrieren sie, wir erhalten den Wert 100, der am Schnittpunkt unserer beiden Zellen angezeigt wird. Alles ist so einfach und leicht, dass selbst der wahrste Humanist es verstehen wird!

Gleichungen und Ungleichungen

Es stellt sich heraus, dass unter bestimmten Bedingungen der Exponent der Logarithmus ist. Daher können alle mathematischen numerischen Ausdrücke als logarithmische Gleichheit geschrieben werden. Beispielsweise kann 3 4 =81 als Logarithmus zur Basis 3 von 81 gleich vier geschrieben werden (log 3 81 = 4). Für negative Potenzen gelten dieselben Regeln: 2 -5 = 1/32, wir schreiben es als Logarithmus, wir erhalten log 2 (1/32) = -5. Einer der faszinierendsten Bereiche der Mathematik ist das Thema „Logarithmen“. Wir werden uns unten Beispiele und Lösungen der Gleichungen ansehen, unmittelbar nachdem wir ihre Eigenschaften untersucht haben. Schauen wir uns nun an, wie Ungleichungen aussehen und wie man sie von Gleichungen unterscheidet.

Es ergibt sich folgender Ausdruck: log 2 (x-1) > 3 – es handelt sich um eine logarithmische Ungleichung, da der unbekannte Wert „x“ unter dem logarithmischen Vorzeichen steht. Und auch im Ausdruck werden zwei Größen verglichen: Der Logarithmus der gewünschten Zahl zur Basis zwei ist größer als die Zahl drei.

Der wichtigste Unterschied zwischen logarithmischen Gleichungen und Ungleichungen besteht darin, dass Gleichungen mit Logarithmen (z. B. der Logarithmus 2 x = √9) einen oder mehrere bestimmte numerische Werte in der Antwort implizieren, während bei der Lösung einer Ungleichung beide Bereiche akzeptabel sind Werte und die Punkte werden durch Brechen dieser Funktion bestimmt. Folglich handelt es sich bei der Antwort nicht um eine einfache Menge einzelner Zahlen, wie bei der Antwort auf eine Gleichung, sondern um eine kontinuierliche Reihe oder Menge von Zahlen.

Grundlegende Sätze über Logarithmen

Bei der Lösung primitiver Aufgaben zur Ermittlung der Werte des Logarithmus sind seine Eigenschaften möglicherweise nicht bekannt. Wenn es jedoch um logarithmische Gleichungen oder Ungleichungen geht, ist es zunächst notwendig, alle grundlegenden Eigenschaften von Logarithmen klar zu verstehen und in der Praxis anzuwenden. Wir werden uns später Beispiele für Gleichungen ansehen; schauen wir uns zunächst jede Eigenschaft genauer an.

  1. Die Hauptidentität sieht so aus: a logaB =B. Dies gilt nur, wenn a größer als 0, ungleich eins und B größer als Null ist.
  2. Der Logarithmus des Produkts kann in der folgenden Formel dargestellt werden: log d (s 1 * s 2) = log d s 1 + log d s 2. In diesem Fall lautet die zwingende Bedingung: d, s 1 und s 2 > 0; a≠1. Sie können einen Beweis für diese logarithmische Formel mit Beispielen und Lösung geben. Sei log a s 1 = f 1 und log a s 2 = f 2, dann a f1 = s 1, a f2 = s 2. Wir erhalten, dass s 1 * s 2 = a f1 *a f2 = a f1+f2 (Eigenschaften von Grad ), und dann per Definition: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, was bewiesen werden musste.
  3. Der Logarithmus des Quotienten sieht folgendermaßen aus: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Der Satz in Form einer Formel hat die folgende Form: log a q b n = n/q log a b.

Diese Formel wird „Eigenschaft des Logarithmusgrades“ genannt. Es ähnelt den Eigenschaften gewöhnlicher Grade, und das ist nicht überraschend, da die gesamte Mathematik auf natürlichen Postulaten basiert. Schauen wir uns den Beweis an.

Sei log a b = t, es ergibt sich a t =b. Potenzieren wir beide Teile m: a tn = b n ;

aber da a tn = (a q) nt/q = b n, also log a q b n = (n*t)/t, dann log a q b n = n/q log a b. Der Satz ist bewiesen.

Beispiele für Probleme und Ungleichheiten

Die häufigsten Arten von Logarithmenproblemen sind Beispiele für Gleichungen und Ungleichungen. Sie finden sich in fast allen Aufgabenbüchern und sind auch Pflichtbestandteil von Mathematikprüfungen. Um an einer Universität zu studieren oder Aufnahmeprüfungen in Mathematik zu bestehen, müssen Sie wissen, wie man solche Aufgaben richtig löst.

Leider gibt es keinen einheitlichen Plan oder Schema zur Lösung und Bestimmung des unbekannten Wertes des Logarithmus, aber bestimmte Regeln können auf jede mathematische Ungleichung oder logarithmische Gleichung angewendet werden. Zunächst sollten Sie herausfinden, ob der Ausdruck vereinfacht oder auf eine allgemeine Form reduziert werden kann. Sie können lange logarithmische Ausdrücke vereinfachen, wenn Sie ihre Eigenschaften richtig verwenden. Lernen wir sie schnell kennen.

Beim Lösen logarithmischer Gleichungen müssen wir bestimmen, um welche Art von Logarithmus es sich handelt: Ein Beispielausdruck kann einen natürlichen Logarithmus oder einen Dezimallogarithmus enthalten.

Hier sind Beispiele ln100, ln1026. Ihre Lösung läuft darauf hinaus, dass sie die Potenz bestimmen müssen, mit der die Basis 10 gleich 100 bzw. 1026 ist. Um natürliche Logarithmen zu lösen, müssen Sie logarithmische Identitäten oder deren Eigenschaften anwenden. Schauen wir uns Beispiele für die Lösung logarithmischer Probleme verschiedener Art an.

So verwenden Sie Logarithmusformeln: Mit Beispielen und Lösungen

Schauen wir uns also Beispiele für die Verwendung der grundlegenden Sätze über Logarithmen an.

  1. Die Eigenschaft des Logarithmus eines Produkts kann bei Aufgaben verwendet werden, bei denen es notwendig ist, einen großen Wert der Zahl b in einfachere Faktoren zu zerlegen. Beispiel: log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Die Antwort ist 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 – wie Sie sehen können, ist es uns mithilfe der vierten Eigenschaft der Logarithmuspotenz gelungen, einen scheinbar komplexen und unlösbaren Ausdruck zu lösen. Sie müssen lediglich die Basis faktorisieren und dann die Exponentenwerte aus dem Vorzeichen des Logarithmus entnehmen.

Aufgaben aus dem Einheitlichen Staatsexamen

Logarithmen kommen häufig in Aufnahmeprüfungen vor, insbesondere viele logarithmische Aufgaben im Einheitlichen Staatsexamen (Staatsexamen für alle Schulabsolventen). Typischerweise sind diese Aufgaben nicht nur in Teil A (dem einfachsten Prüfungsteil der Prüfung), sondern auch in Teil C (den komplexesten und umfangreichsten Aufgaben) enthalten. Die Prüfung erfordert genaue und perfekte Kenntnisse des Themas „Natürliche Logarithmen“.

Beispiele und Problemlösungen sind den offiziellen Versionen des Einheitlichen Staatsexamens entnommen. Mal sehen, wie solche Aufgaben gelöst werden.

Gegeben sei log 2 (2x-1) = 4. Lösung:
Schreiben wir den Ausdruck um und vereinfachen ihn ein wenig log 2 (2x-1) = 2 2, durch die Definition des Logarithmus erhalten wir 2x-1 = 2 4, also 2x = 17; x = 8,5.

  • Damit die Lösung nicht umständlich und unübersichtlich wird, reduziert man am besten alle Logarithmen auf die gleiche Basis.
  • Alle Ausdrücke unter dem Logarithmuszeichen werden als positiv angezeigt. Wenn daher der Exponent eines Ausdrucks, der unter dem Logarithmuszeichen steht und dessen Basis ist, als Multiplikator herausgenommen wird, muss der unter dem Logarithmus verbleibende Ausdruck positiv sein.