Σπίτι · Συσκευές · Οξέα και οι τύποι τους. Πυκνότητα διαφόρων οξέων. Ασήμαντα ονόματα ανόργανων ουσιών

Οξέα και οι τύποι τους. Πυκνότητα διαφόρων οξέων. Ασήμαντα ονόματα ανόργανων ουσιών

7. Οξέα. Αλας. Σχέση μεταξύ κατηγοριών ανόργανων ουσιών

7.1. Οξέα

Τα οξέα είναι ηλεκτρολύτες, με τη διάσταση των οποίων σχηματίζονται μόνο κατιόντα υδρογόνου H + ως θετικά φορτισμένα ιόντα (ακριβέστερα, ιόντα υδρονίου H 3 O +).

Ένας άλλος ορισμός: τα οξέα είναι σύνθετες ουσίες που αποτελούνται από άτομο υδρογόνου και υπολείμματα οξέος (Πίνακας 7.1).

Πίνακας 7.1

Τύποι και ονόματα ορισμένων οξέων, υπολειμμάτων οξέων και αλάτων

όξινη φόρμουλαΌνομα οξέοςΥπόλειμμα οξέος (ανιόν)Ονομασία αλάτων (μέσος όρος)
HFΥδροφθορικό (φθορικό)F −Φθοριούχα
HClΥδροχλωρικό (υδροχλωρικό)Cl −Χλωρίδια
HBrΥδροβρωμικόBr−Βρωμίδια
ΓΕΙΑΥδροϊωδίδιοI −Ιωδίδης
H2SΥδρόθειοS 2−Σουλφίδια
H2SO3ΘειούχοςSO 3 2 −Θειώδη
H2SO4ΘειικόςSO 4 2 −Θειικά
HNO2ΑζωτούχοςNO2−Νιτρώδη
HNO3ΑζωτοΟΧΙ 3 −Νιτρικά
H2SiO3ΠυρίτιοSiO 3 2 −Πυριτικά
HPO 3ΜεταφωσφορικόPO 3 −Μεταφωσφορικά
H3PO4ΟρθοφωσφορικόςPO 4 3 −Ορθοφωσφορικά (φωσφορικά)
H4P2O7Πυροφωσφορικό (διφωσφορικό)P 2 O 7 4 −Πυροφωσφορικά (διφωσφορικά)
HMnO4ΜαγγάνιοMnO 4 -Υπερμαγγανικά
H2CrO4ΧρώμιοCrO 4 2 −Χρωμικά
H2Cr2O7ΔιχρωμίαCr 2 O 7 2 −Διχρωμικά (διχρωμικά)
H2SeO4ΣελήνιοSeO 4 2 −Σελενάτες
H3BO3BornayaBO 3 3 −Ορθοβοράτες
HClOΥπόχλωροClO -Υποχλωριώτες
HClO2ΧλωριούχοClO2−Χλωρίτες
HClO3ΧλωριώδεςClO3−Χλωρικά
HClO4ΧλώριοClO 4 -Υπερχλωρικά
H2CO3ΚάρβουνοCO 3 3 −Ανθρακικά
CH3COOHΞύδιCH 3 COO −Οξεικά
HCOOHΜυρμήγκιHCOO −Μορμιάτες

Υπό κανονικές συνθήκες, τα οξέα μπορεί να είναι στερεά (H 3 PO 4, H 3 BO 3, H 2 SiO 3) και υγρά (HNO 3, H 2 SO 4, CH 3 COOH). Αυτά τα οξέα μπορούν να υπάρχουν τόσο μεμονωμένα (100% μορφή) όσο και με τη μορφή αραιωμένων και συμπυκνωμένων διαλυμάτων. Για παράδειγμα, τα H 2 SO 4 , HNO 3 , H 3 PO 4 , CH 3 COOH είναι γνωστά τόσο μεμονωμένα όσο και σε διαλύματα.

Ένας αριθμός οξέων είναι γνωστός μόνο σε διαλύματα. Αυτά είναι όλα υδραλογονίδια (HCl, HBr, HI), υδρόθειο H 2 S, υδροκυάνιο (υδροκυανικό HCN), ανθρακικό H 2 CO 3, θειικό οξύ H 2 SO 3, τα οποία είναι διαλύματα αερίων στο νερό. Για παράδειγμα, το υδροχλωρικό οξύ είναι ένα μείγμα HCl και H 2 O, το ανθρακικό οξύ είναι ένα μείγμα CO 2 και H 2 O. Είναι σαφές ότι η χρήση της έκφρασης «διάλυμα υδροχλωρικού οξέος» είναι εσφαλμένη.

Τα περισσότερα οξέα είναι διαλυτά στο νερό· το πυριτικό οξύ H 2 SiO 3 είναι αδιάλυτο. Η συντριπτική πλειοψηφία των οξέων έχουν μοριακή δομή. Παραδείγματα συντακτικών τύπων οξέων:

Στα περισσότερα μόρια οξέος που περιέχουν οξυγόνο, όλα τα άτομα υδρογόνου συνδέονται με το οξυγόνο. Υπάρχουν όμως και εξαιρέσεις:


Τα οξέα ταξινομούνται σύμφωνα με έναν αριθμό χαρακτηριστικών (Πίνακας 7.2).

Πίνακας 7.2

Ταξινόμηση οξέων

Πινακίδα ταξινόμησηςΤύπος οξέοςΠαραδείγματα
Αριθμός ιόντων υδρογόνου που σχηματίζονται κατά την πλήρη διάσπαση ενός μορίου οξέοςΜονοβάσηHCl, HNO3, CH3COOH
ΔιβασικόςH2SO4, H2S, H2CO3
TribasicH3PO4, H3AsO4
Η παρουσία ή απουσία ατόμου οξυγόνου σε ένα μόριοΠεριέχει οξυγόνο (υδροξείδια οξέων, οξοξέα)HNO2, H2SiO3, H2SO4
Χωρίς οξυγόνοHF, H2S, HCN
Βαθμός διάστασης (ισχύς)Ισχυροί (πλήρης διάσπαση, ισχυροί ηλεκτρολύτες)HCl, HBr, HI, H 2 SO 4 (αραιωμένο), HNO 3, HClO 3, HClO 4, HMnO 4, H 2 Cr 2 O 7
Αδύναμοι (μερικώς διαχωρισμένοι, αδύναμοι ηλεκτρολύτες)HF, HNO 2, H 2 SO 3, HCOOH, CH 3 COOH, H 2 SiO 3, H 2 S, HCN, H 3 PO 4, H 3 PO 3, HClO, HClO 2, H 2 CO 3, H 3 BO 3, H 2 SO 4 (συμπ.)
Οξειδωτικές ιδιότητεςΟξειδωτικά μέσα που οφείλονται σε ιόντα Η+ (υπό όρους μη οξειδωτικά οξέα)HCl, HBr, HI, HF, H 2 SO 4 (dil), H 3 PO 4, CH 3 COOH
Οξειδωτικά μέσα που οφείλονται σε ανιόντα (οξειδωτικά οξέα)HNO 3, HMnO 4, H 2 SO 4 (συμπυκνωμένο), H 2 Cr 2 O 7
Ανιοντικοί παράγοντεςHCl, HBr, HI, H 2 S (αλλά όχι HF)
Θερμική σταθερότηταΥπάρχουν μόνο σε λύσειςH 2 CO 3, H 2 SO 3, HClO, HClO 2
Αποσυντίθεται εύκολα όταν θερμαίνεταιH 2 SO 3 , HNO 3 , H 2 SiO 3
Θερμικά σταθερόH 2 SO 4 (πυκνό), H 3 PO 4

Όλες οι γενικές χημικές ιδιότητες των οξέων οφείλονται στην παρουσία στα υδατικά τους διαλύματα περίσσειας κατιόντων υδρογόνου H + (H 3 O +).

1. Λόγω της περίσσειας ιόντων Η+, υδατικά διαλύματα οξέων αλλάζουν το χρώμα της ιώδους λυχνίας και του μεθυλοπορτοκαλί σε κόκκινο (η φαινολοφθαλεΐνη δεν αλλάζει χρώμα και παραμένει άχρωμη). Σε ένα υδατικό διάλυμα ασθενούς ανθρακικού οξέος, η λακκούβα δεν είναι κόκκινος, αλλά ροζ· ένα διάλυμα πάνω από ένα ίζημα πολύ ασθενούς πυριτικού οξέος δεν αλλάζει καθόλου το χρώμα των δεικτών.

2. Τα οξέα αλληλεπιδρούν με βασικά οξείδια, βάσεις και αμφοτερικά υδροξείδια, ένυδρη αμμωνία (βλ. Κεφάλαιο 6).

Παράδειγμα 7.1. Για να πραγματοποιήσετε τον μετασχηματισμό BaO → BaSO 4 μπορείτε να χρησιμοποιήσετε: α) SO 2; β) H2SO4; γ) Na 2 SO 4; δ) SO 3.

Λύση. Ο μετασχηματισμός μπορεί να πραγματοποιηθεί χρησιμοποιώντας H 2 SO 4:

BaO + H 2 SO 4 = BaSO 4 ↓ + H 2 O

BaO + SO 3 = BaSO 4

Το Na 2 SO 4 δεν αντιδρά με το BaO και στην αντίδραση του BaO με το SO 2 σχηματίζεται θειώδες βάριο:

BaO + SO 2 = BaSO 3

Απάντηση: 3).

3. Τα οξέα αντιδρούν με την αμμωνία και τα υδατικά διαλύματά της για να σχηματίσουν άλατα αμμωνίου:

HCl + NH3 = NH4Cl - χλωριούχο αμμώνιο;

H 2 SO 4 + 2NH 3 = (NH 4) 2 SO 4 - θειικό αμμώνιο.

4. Τα μη οξειδωτικά οξέα αντιδρούν με μέταλλα που βρίσκονται στη σειρά δραστηριότητας μέχρι το υδρογόνο για να σχηματίσουν ένα άλας και να απελευθερώσουν υδρογόνο:

H 2 SO 4 (αραιωμένο) + Fe = FeSO 4 + H 2

2HCl + Zn = ZnCl 2 = H 2

Η αλληλεπίδραση των οξειδωτικών οξέων (HNO 3, H 2 SO 4 (πυκνό)) με τα μέταλλα είναι πολύ συγκεκριμένη και λαμβάνεται υπόψη κατά τη μελέτη της χημείας των στοιχείων και των ενώσεων τους.

5. Τα οξέα αλληλεπιδρούν με τα άλατα. Η αντίδραση έχει μια σειρά από χαρακτηριστικά:

α) στις περισσότερες περιπτώσεις, όταν ένα ισχυρότερο οξύ αντιδρά με ένα άλας ενός ασθενέστερου οξέος, σχηματίζεται ένα άλας ενός ασθενούς οξέος και ένα ασθενές οξύ ή, όπως λένε, ένα ισχυρότερο οξύ αντικαθιστά ένα ασθενέστερο. Η σειρά φθίνουσας ισχύος των οξέων μοιάζει με αυτό:

Παραδείγματα αντιδράσεων που συμβαίνουν:

2HCl + Na 2 CO 3 = 2NaCl + H 2 O + CO 2

H 2 CO 3 + Na 2 SiO 3 = Na 2 CO 3 + H 2 SiO 3 ↓

2CH 3 COOH + K 2 CO 3 = 2CH 3 COOK + H 2 O + CO 2

3H 2 SO 4 + 2K 3 PO 4 = 3K 2 SO 4 + 2H 3 PO 4

Μην αλληλεπιδράτε μεταξύ τους, για παράδειγμα, KCl και H 2 SO 4 (αραιωμένο), NaNO 3 και H 2 SO 4 (αραιωμένο), K 2 SO 4 και HCl (HNO 3, HBr, HI), K 3 PO 4 και H 2 CO 3, CH 3 COOK και H 2 CO 3;

β) σε ορισμένες περιπτώσεις, ένα ασθενέστερο οξύ αντικαθιστά ένα ισχυρότερο από ένα αλάτι:

CuSO 4 + H 2 S = CuS↓ + H 2 SO 4

3AgNO 3 (dil) + H 3 PO 4 = Ag 3 PO 4 ↓ + 3HNO 3.

Τέτοιες αντιδράσεις είναι δυνατές όταν τα ιζήματα των αλάτων που προκύπτουν δεν διαλύονται στα προκύπτοντα αραιά ισχυρά οξέα (H2SO4 και HNO3).

γ) στην περίπτωση του σχηματισμού ιζημάτων που είναι αδιάλυτα σε ισχυρά οξέα, μπορεί να συμβεί αντίδραση μεταξύ ενός ισχυρού οξέος και ενός άλατος που σχηματίζεται από άλλο ισχυρό οξύ:

BaCl 2 + H 2 SO 4 = BaSO 4 ↓ + 2HCl

Ba(NO 3) 2 + H 2 SO 4 = BaSO 4 ↓ + 2HNO 3

AgNO 3 + HCl = AgCl↓ + HNO 3

Παράδειγμα 7.2. Υποδείξτε τη σειρά που περιέχει τους τύπους των ουσιών που αντιδρούν με H 2 SO 4 (αραιωμένο).

1) Zn, Al2O3, KCl (ρ-ρ); 3) NaNO3 (p-p), Na2S, NaF, 2) Cu(OH) 2, K2CO3, Ag. 4) Na 2 SO 3, Mg, Zn(OH) 2.

Λύση. Όλες οι ουσίες της σειράς 4 αλληλεπιδρούν με το H 2 SO 4 (dil):

Na 2 SO 3 + H 2 SO 4 = Na 2 SO 4 + H 2 O + SO 2

Mg + H 2 SO 4 = MgSO 4 + H 2

Zn(OH) 2 + H 2 SO 4 = ZnSO 4 + 2H 2 O

Στη σειρά 1) η αντίδραση με KCl (p-p) δεν είναι δυνατή, στη σειρά 2) - με Ag, στη σειρά 3) - με NaNO 3 (p-p).

Απάντηση: 4).

6. Το πυκνό θειικό οξύ συμπεριφέρεται πολύ ειδικά σε αντιδράσεις με άλατα. Αυτό είναι ένα μη πτητικό και θερμικά σταθερό οξύ, επομένως εκτοπίζει όλα τα ισχυρά οξέα από τα στερεά (!) άλατα, καθώς είναι πιο πτητικά από το H2SO4 (συμπυκνό):

KCl (tv) + H 2 SO 4 (συμπ.) KHSO 4 + HCl

2KCl (s) + H 2 SO 4 (συμπυκνωμένο) K 2 SO 4 + 2HCl

Τα άλατα που σχηματίζονται από ισχυρά οξέα (HBr, HI, HCl, HNO 3, HClO 4) αντιδρούν μόνο με πυκνό θειικό οξύ και μόνο όταν βρίσκονται σε στερεή κατάσταση

Παράδειγμα 7.3. Το πυκνό θειικό οξύ, σε αντίθεση με το αραιό, αντιδρά:

3) KNO 3 (tv);

Λύση. Και τα δύο οξέα αντιδρούν με KF, Na 2 CO 3 και Na 3 PO 4, και μόνο το H 2 SO 4 (συμπυκν.) αντιδρά με το KNO 3 (στερεό).

Απάντηση: 3).

Οι μέθοδοι για την παραγωγή οξέων είναι πολύ διαφορετικές.

Ανοξικά οξέαλαμβάνω:

  • διαλύοντας τα αντίστοιχα αέρια στο νερό:

HCl (g) + H 2 O (l) → HCl (p-p)

H 2 S (g) + H 2 O (l) → H 2 S (διάλυμα)

  • από άλατα με εκτόπιση με ισχυρότερα ή λιγότερο πτητικά οξέα:

FeS + 2HCl = FeCl 2 + H 2 S

KCl (tv) + H 2 SO 4 (συμπ.) = KHSO 4 + HCl

Na 2 SO 3 + H 2 SO 4 Na 2 SO 4 + H 2 SO 3

Οξυγόνο που περιέχουν οξέαλαμβάνω:

  • διαλύοντας τα αντίστοιχα όξινα οξείδια στο νερό, ενώ ο βαθμός οξείδωσης του στοιχείου που σχηματίζει οξύ στο οξείδιο και το οξύ παραμένει ο ίδιος (με εξαίρεση το NO 2):

N2O5 + H2O = 2HNO3

SO 3 + H 2 O = H 2 SO 4

P 2 O 5 + 3H 2 O 2H 3 PO 4

  • οξείδωση μη μετάλλων με οξειδωτικά οξέα:

S + 6HNO 3 (συμπ.) = H 2 SO 4 + 6NO 2 + 2H 2 O

  • εκτοπίζοντας ένα ισχυρό οξύ από ένα άλας άλλου ισχυρού οξέος (εάν καταβυθιστεί ένα ίζημα αδιάλυτο στα οξέα που προκύπτουν):

Ba(NO 3) 2 + H 2 SO 4 (αραιωμένο) = BaSO 4 ↓ + 2HNO 3

AgNO 3 + HCl = AgCl↓ + HNO 3

  • εκτοπίζοντας ένα πτητικό οξύ από τα άλατά του με ένα λιγότερο πτητικό οξύ.

Για το σκοπό αυτό, χρησιμοποιείται συχνότερα μη πτητικό, θερμικά σταθερό συμπυκνωμένο θειικό οξύ:

NaNO 3 (tv) + H 2 SO 4 (συμπ.) NaHSO 4 + HNO 3

KClO 4 (tv) + H 2 SO 4 (συμπ.) KHSO 4 + HClO 4

  • μετατόπιση ενός ασθενέστερου οξέος από τα άλατά του από ένα ισχυρότερο οξύ:

Ca 3 (PO 4) 2 + 3H 2 SO 4 = 3CaSO 4 ↓ + 2H 3 PO 4

NaNO 2 + HCl = NaCl + HNO 2

K 2 SiO 3 + 2HBr = 2KBr + H 2 SiO 3 ↓

Οξέαείναι πολύπλοκες ουσίες των οποίων τα μόρια περιλαμβάνουν άτομα υδρογόνου που μπορούν να αντικατασταθούν ή να αντικατασταθούν με άτομα μετάλλου και ένα υπόλειμμα οξέος.

Με βάση την παρουσία ή την απουσία οξυγόνου στο μόριο, τα οξέα χωρίζονται σε οξυγονούχα(H 2 SO 4 θειικό οξύ, H 2 SO 3 θειικό οξύ, HNO 3 νιτρικό οξύ, H 3 PO 4 φωσφορικό οξύ, H 2 CO 3 ανθρακικό οξύ, H 2 SiO 3 πυριτικό οξύ) και χωρίς οξυγόνο(HF υδροφθορικό οξύ, HCl υδροχλωρικό οξύ (υδροχλωρικό οξύ), HBr υδροβρωμικό οξύ, HI υδροϊωδικό οξύ, H2S υδροσουλφιδικό οξύ).

Ανάλογα με τον αριθμό των ατόμων υδρογόνου στο μόριο του οξέος, τα οξέα είναι μονοβασικά (με 1 άτομο Η), διβασικά (με 2 άτομα Η) και τριβασικά (με 3 άτομα Η). Για παράδειγμα, το νιτρικό οξύ HNO 3 είναι μονοβασικό, αφού το μόριο του περιέχει ένα άτομο υδρογόνου, το θειικό οξύ H 2 SO 4 διβασικός κ.λπ.

Υπάρχουν πολύ λίγες ανόργανες ενώσεις που περιέχουν τέσσερα άτομα υδρογόνου που μπορούν να αντικατασταθούν από ένα μέταλλο.

Το τμήμα ενός μορίου οξέος χωρίς υδρογόνο ονομάζεται υπόλειμμα οξέος.

Όξινα υπολείμματαμπορεί να αποτελούνται από ένα άτομο (-Cl, -Br, -I) - αυτά είναι απλά όξινα υπολείμματα ή μπορεί να αποτελούνται από μια ομάδα ατόμων (-SO 3, -PO 4, -SiO 3) - αυτά είναι πολύπλοκα υπολείμματα.

Σε υδατικά διαλύματα, κατά τις αντιδράσεις ανταλλαγής και υποκατάστασης, τα όξινα υπολείμματα δεν καταστρέφονται:

H 2 SO 4 + CuCl 2 → CuSO 4 + 2 HCl

Η λέξη ανυδρίτηςσημαίνει άνυδρο, δηλαδή οξύ χωρίς νερό. Για παράδειγμα,

H 2 SO 4 – H 2 O → SO 3. Τα ανοξικά οξέα δεν έχουν ανυδρίτες.

Τα οξέα παίρνουν το όνομά τους από το όνομα του στοιχείου σχηματισμού οξέος (παράγοντας σχηματισμού οξέος) με την προσθήκη των καταλήξεων "naya" και λιγότερο συχνά "vaya": H 2 SO 4 - θειικό. H 2 SO 3 – άνθρακας; H 2 SiO 3 – πυρίτιο, κ.λπ.

Το στοιχείο μπορεί να σχηματίσει πολλά οξέα οξυγόνου. Σε αυτήν την περίπτωση, οι υποδεικνυόμενες καταλήξεις στα ονόματα των οξέων θα είναι όταν το στοιχείο εμφανίζει υψηλότερο σθένος (το μόριο του οξέος περιέχει υψηλή περιεκτικότητα σε άτομα οξυγόνου). Εάν το στοιχείο εμφανίζει χαμηλότερο σθένος, η κατάληξη στο όνομα του οξέος θα είναι "κενή": HNO 3 - νιτρικό, HNO 2 - αζωτούχο.

Τα οξέα μπορούν να ληφθούν διαλύοντας ανυδρίτες στο νερό.Εάν οι ανυδρίτες είναι αδιάλυτοι στο νερό, το οξύ μπορεί να ληφθεί με τη δράση ενός άλλου ισχυρότερου οξέος στο άλας του απαιτούμενου οξέος. Αυτή η μέθοδος είναι τυπική τόσο για οξυγόνο όσο και για οξέα χωρίς οξυγόνο. Τα οξέα χωρίς οξυγόνο λαμβάνονται επίσης με απευθείας σύνθεση από υδρογόνο και ένα αμέταλλο, ακολουθούμενη από διάλυση της προκύπτουσας ένωσης σε νερό:

H2 + Cl2 → 2 HCl;

H 2 + S → H 2 S.

Τα διαλύματα των αερίων ουσιών που προκύπτουν HCl και H 2 S είναι οξέα.

Υπό κανονικές συνθήκες, τα οξέα υπάρχουν τόσο σε υγρή όσο και σε στερεή κατάσταση.

Χημικές ιδιότητες οξέων

Τα διαλύματα οξέος δρουν σε δείκτες. Όλα τα οξέα (εκτός από το πυριτικό) είναι πολύ διαλυτά στο νερό. Ειδικές ουσίες - δείκτες σας επιτρέπουν να προσδιορίσετε την παρουσία οξέος.

Οι δείκτες είναι ουσίες πολύπλοκης δομής. Αλλάζουν χρώμα ανάλογα με την αλληλεπίδρασή τους με διαφορετικές χημικές ουσίες. Σε ουδέτερα διαλύματα έχουν ένα χρώμα, σε διαλύματα βάσεων έχουν άλλο χρώμα. Όταν αλληλεπιδρούν με ένα οξύ, αλλάζουν το χρώμα τους: ο δείκτης πορτοκαλί μεθυλίου γίνεται κόκκινος και ο δείκτης λακκούβας γίνεται επίσης κόκκινος.

Αλληλεπίδραση με βάσεις με το σχηματισμό νερού και αλατιού, το οποίο περιέχει αμετάβλητο υπόλειμμα οξέος (αντίδραση εξουδετέρωσης):

H 2 SO 4 + Ca(OH) 2 → CaSO 4 + 2 H 2 O.

Αλληλεπιδρούν με οξείδια βάσης με το σχηματισμό νερού και αλατιού (αντίδραση εξουδετέρωσης). Το άλας περιέχει το όξινο υπόλειμμα του οξέος που χρησιμοποιήθηκε στην αντίδραση εξουδετέρωσης:

H 3 PO 4 + Fe 2 O 3 → 2 FePO 4 + 3 H 2 O.

Αλληλεπίδραση με μέταλλα. Για να αλληλεπιδράσουν τα οξέα με τα μέταλλα, πρέπει να πληρούνται ορισμένες προϋποθέσεις:

1. το μέταλλο πρέπει να είναι επαρκώς ενεργό σε σχέση με τα οξέα (στη σειρά δραστικότητας των μετάλλων πρέπει να βρίσκεται πριν από το υδρογόνο). Όσο πιο αριστερά βρίσκεται ένα μέταλλο στη σειρά δραστηριότητας, τόσο πιο έντονα αλληλεπιδρά με τα οξέα.

2. το οξύ πρέπει να είναι αρκετά ισχυρό (δηλαδή ικανό να δώσει ιόντα υδρογόνου H +).

Όταν συμβαίνουν χημικές αντιδράσεις οξέος με μέταλλα, σχηματίζεται αλάτι και απελευθερώνεται υδρογόνο (εκτός από την αλληλεπίδραση μετάλλων με νιτρικό και πυκνό θειικό οξύ):

Zn + 2HCl → ZnCl 2 + H 2 ;

Cu + 4HNO 3 → CuNO 3 + 2 NO 2 + 2 H 2 O.

Έχετε ακόμα ερωτήσεις; Θέλετε να μάθετε περισσότερα για τα οξέα;
Για να λάβετε βοήθεια από έναν δάσκαλο -.
Το πρώτο μάθημα είναι δωρεάν!

blog.site, κατά την πλήρη ή μερική αντιγραφή υλικού, απαιτείται σύνδεσμος στην αρχική πηγή.

Οξέα- ηλεκτρολύτες, κατά τη διάσταση των οποίων σχηματίζονται μόνο ιόντα H + από θετικά ιόντα:

HNO 3 ↔ H + + NO 3 - ;

CH 3 COOH↔ H + +CH 3 COO — .

Όλα τα οξέα ταξινομούνται σε ανόργανα και οργανικά (καρβοξυλικά), τα οποία έχουν επίσης τις δικές τους (εσωτερικές) ταξινομήσεις.

Υπό κανονικές συνθήκες, σημαντική ποσότητα ανόργανων οξέων υπάρχει σε υγρή κατάσταση, μερικά σε στερεή κατάσταση (H 3 PO 4, H 3 BO 3).

Τα οργανικά οξέα με έως και 3 άτομα άνθρακα είναι εξαιρετικά ευκίνητα, άχρωμα υγρά με χαρακτηριστική έντονη οσμή. Τα οξέα με 4-9 άτομα άνθρακα είναι ελαιώδη υγρά με δυσάρεστη οσμή και τα οξέα με μεγάλο αριθμό ατόμων άνθρακα είναι στερεά αδιάλυτα στο νερό.

Χημικοί τύποι οξέων

Ας εξετάσουμε τους χημικούς τύπους των οξέων χρησιμοποιώντας το παράδειγμα πολλών αντιπροσώπων (τόσο ανόργανων όσο και οργανικών): υδροχλωρικό οξύ - HCl, θειικό οξύ - H 2 SO 4, φωσφορικό οξύ - H 3 PO 4, οξικό οξύ - CH 3 COOH και βενζοϊκό οξύ - C 6 H5COOH. Ο χημικός τύπος δείχνει την ποιοτική και ποσοτική σύνθεση του μορίου (πόσα και ποια άτομα περιλαμβάνονται σε μια συγκεκριμένη ένωση) Χρησιμοποιώντας τον χημικό τύπο, μπορείτε να υπολογίσετε το μοριακό βάρος των οξέων (Ar(H) = 1 amu, Ar( Cl) = 35,5 amu, Ar(P) = 31 amu, Ar(O) = 16 amu, Ar(S) = 32 amu, Ar(C) = 12 π.μ.):

Mr(HCl) = Ar(H) + Ar(Cl);

Mr(HCl) = 1 + 35,5 = 36,5.

Mr(H2SO4) = 2×Ar(H) + Ar(S) + 4×Ar(O);

Mr(H 2 SO 4) = 2×1 + 32 + 4×16 = 2 + 32 + 64 = 98.

Mr(H3PO4) = 3×Ar(H) + Ar(P) + 4×Ar(O);

Mr(H 3 PO 4) = 3×1 + 31 + 4×16 = 3 + 31 + 64 = 98.

Mr(CH3COOH) = 3×Ar(C) + 4×Ar(H) + 2×Ar(O);

Mr(CH 3 COOH) = 3×12 + 4×1 + 2×16 = 36 + 4 + 32 = 72.

Mr(C6H5COOH) = 7×Ar(C) + 6×Ar(H) + 2×Ar(O);

Mr(C 6 H 5 COOH) = 7 × 12 + 6 × 1 + 2 × 16 = 84 + 6 + 32 = 122.

Δομικοί (γραφικοί) τύποι οξέων

Ο δομικός (γραφικός) τύπος μιας ουσίας είναι πιο οπτικός. Δείχνει πώς συνδέονται τα άτομα μεταξύ τους μέσα σε ένα μόριο. Ας υποδείξουμε τους συντακτικούς τύπους καθεμιάς από τις παραπάνω ενώσεις:

Ρύζι. 1. Δομικός τύπος υδροχλωρικού οξέος.

Ρύζι. 2. Δομικός τύπος θειικού οξέος.

Ρύζι. 3. Δομικός τύπος φωσφορικού οξέος.

Ρύζι. 4. Δομικός τύπος οξικού οξέος.

Ρύζι. 5. Δομικός τύπος βενζοϊκού οξέος.

Ιονικοί τύποι

Όλα τα ανόργανα οξέα είναι ηλεκτρολύτες, δηλ. ικανό να διασπαστεί σε υδατικό διάλυμα σε ιόντα:

HCl ↔ H + + Cl - ;

H 2 SO 4 ↔ 2H + + SO 4 2- ;

H 3 PO 4 ↔ 3H + + PO 4 3- .

Παραδείγματα επίλυσης προβλημάτων

ΠΑΡΑΔΕΙΓΜΑ 1

Ασκηση Με πλήρη καύση 6 g οργανικής ύλης, σχηματίστηκαν 8,8 g μονοξειδίου του άνθρακα (IV) και 3,6 g νερού. Προσδιορίστε τον μοριακό τύπο της καμένης ουσίας εάν είναι γνωστό ότι η μοριακή της μάζα είναι 180 g/mol.
Λύση Ας συντάξουμε ένα διάγραμμα της αντίδρασης καύσης μιας οργανικής ένωσης, προσδιορίζοντας τον αριθμό των ατόμων άνθρακα, υδρογόνου και οξυγόνου ως «x», «y» και «z», αντίστοιχα:

C x H y O z + O z →CO 2 + H 2 O.

Ας προσδιορίσουμε τις μάζες των στοιχείων που απαρτίζουν αυτή την ουσία. Τιμές σχετικών ατομικών μαζών που λαμβάνονται από τον Περιοδικό Πίνακα του D.I. Mendeleev, στρογγυλοποιήστε σε ακέραιους αριθμούς: Ar(C) = 12 amu, Ar(H) = 1 amu, Ar(O) = 16 amu.

m(C) = n(C)×M(C) = n(CO2)×M(C) = ×M(C);

m(Η) = η(Η)×Μ(Η) = 2×n(Η2Ο)×Μ(Η) = ×Μ(Η);

Ας υπολογίσουμε τις μοριακές μάζες διοξειδίου του άνθρακα και νερού. Όπως είναι γνωστό, η μοριακή μάζα ενός μορίου είναι ίση με το άθροισμα των σχετικών ατομικών μαζών των ατόμων που αποτελούν το μόριο (M = Mr):

M(CO 2) = Ar(C) + 2×Ar(O) = 12+ 2×16 = 12 + 32 = 44 g/mol;

M(H2O) = 2×Ar(H) + Ar(O) = 2×1+ 16 = 2 + 16 = 18 g/mol.

m(C) = ×12 = 2,4 g;

m(H) = 2 × 3,6 / 18 × 1 = 0,4 g.

m(O) = m(C x H y O z) - m(C) - m(H) = 6 - 2,4 - 0,4 = 3,2 g.

Ας προσδιορίσουμε τον χημικό τύπο της ένωσης:

x:y:z = m(C)/Ar(C): m(H)/Ar(H): m(O)/Ar(O);

x:y:z= 2,4/12:0,4/1:3,2/16;

x:y:z= 0,2: 0,4: 0,2 = 1: 2: 1.

Αυτό σημαίνει ότι ο απλούστερος τύπος της ένωσης είναι CH 2 O και η μοριακή μάζα είναι 30 g/mol.

Για να βρούμε τον αληθινό τύπο μιας οργανικής ένωσης, βρίσκουμε την αναλογία της αληθινής και της προκύπτουσας μοριακής μάζας:

M ουσία / M(CH 2 O) = 180 / 30 = 6.

Αυτό σημαίνει ότι οι δείκτες των ατόμων άνθρακα, υδρογόνου και οξυγόνου θα πρέπει να είναι 6 φορές υψηλότεροι, δηλ. ο τύπος της ουσίας θα είναι C 6 H 12 O 6. Αυτό είναι γλυκόζη ή φρουκτόζη.

Απάντηση C6H12O6

ΠΑΡΑΔΕΙΓΜΑ 2

Ασκηση Εξάγετε τον απλούστερο τύπο μιας ένωσης στην οποία το κλάσμα μάζας του φωσφόρου είναι 43,66%, και το κλάσμα μάζας του οξυγόνου είναι 56,34%.
Λύση Το κλάσμα μάζας του στοιχείου Χ σε ένα μόριο της σύνθεσης ΝΧ υπολογίζεται χρησιμοποιώντας τον ακόλουθο τύπο:

ω (X) = n × Ar (X) / M (HX) × 100%.

Ας υποδηλώσουμε τον αριθμό των ατόμων φωσφόρου στο μόριο με "x" και τον αριθμό των ατόμων οξυγόνου με "y"

Ας βρούμε τις αντίστοιχες σχετικές ατομικές μάζες των στοιχείων φώσφορος και οξυγόνο (οι τιμές των σχετικών ατομικών μαζών που λαμβάνονται από τον Περιοδικό Πίνακα του D.I. Mendeleev στρογγυλοποιούνται σε ακέραιους αριθμούς).

Ar(P) = 31; Ar(O) = 16.

Διαιρούμε την ποσοστιαία περιεκτικότητα των στοιχείων στις αντίστοιχες σχετικές ατομικές μάζες. Έτσι θα βρούμε τη σχέση μεταξύ του αριθμού των ατόμων στο μόριο της ένωσης:

x:y = ω(P)/Ar(P) : ω (O)/Ar(O);

x:y = 43,66/31: 56,34/16;

x:y: = 1,4: 3,5 = 1: 2,5 = 2: 5.

Αυτό σημαίνει ότι ο απλούστερος τύπος για το συνδυασμό φωσφόρου και οξυγόνου είναι το P 2 O 5 . Είναι οξείδιο του φωσφόρου (V).

Απάντηση P2O5

Τα οξέα μπορούν να ταξινομηθούν με βάση διάφορα κριτήρια:

1) Η παρουσία ατόμων οξυγόνου στο οξύ

2) Οξική βασικότητα

Η βασικότητα ενός οξέος είναι ο αριθμός των «κινητών» ατόμων υδρογόνου στο μόριό του, ικανά να διαχωριστούν από το μόριο του οξέος με τη μορφή κατιόντων υδρογόνου H + κατά τη διάσταση και επίσης να αντικατασταθούν από άτομα μετάλλου:

4) Διαλυτότητα

5) Σταθερότητα

7) Οξειδωτικές ιδιότητες

Χημικές ιδιότητες οξέων

1. Ικανότητα διάσπασης

Τα οξέα διασπώνται σε υδατικά διαλύματα σε κατιόντα υδρογόνου και υπολείμματα οξέος. Όπως αναφέρθηκε ήδη, τα οξέα διακρίνονται σε καλά διαχωριστικά (ισχυρά) και σε χαμηλή διάσταση (ασθενή). Κατά τη σύνταξη της εξίσωσης διάστασης για ισχυρά μονοβασικά οξέα, χρησιμοποιείται είτε ένα δεξιό βέλος () είτε ένα σύμβολο ίσου (=), το οποίο δείχνει την εικονική μη αναστρέψιμη διάσταση. Για παράδειγμα, η εξίσωση διάστασης για ισχυρό υδροχλωρικό οξύ μπορεί να γραφτεί με δύο τρόπους:

ή με αυτή τη μορφή: HCl = H + + Cl -

ή με αυτόν τον τρόπο: HCl → H + + Cl -

Στην πραγματικότητα, η κατεύθυνση του βέλους μας λέει ότι η αντίστροφη διαδικασία συνδυασμού κατιόντων υδρογόνου με όξινα υπολείμματα (σύνδεση) πρακτικά δεν συμβαίνει σε ισχυρά οξέα.

Αν θέλουμε να γράψουμε την εξίσωση διάστασης για ένα ασθενές μονοπρωτικό οξύ, πρέπει να χρησιμοποιήσουμε δύο βέλη στην εξίσωση αντί για το πρόσημο. Αυτό το σημάδι αντανακλά την αναστρεψιμότητα της διάστασης των ασθενών οξέων - στην περίπτωσή τους, η αντίστροφη διαδικασία συνδυασμού κατιόντων υδρογόνου με όξινα υπολείμματα είναι έντονα έντονη:

CH 3 COOH CH 3 COO — + H +

Τα πολυβασικά οξέα διαχωρίζονται σταδιακά, δηλ. Τα κατιόντα υδρογόνου διαχωρίζονται από τα μόριά τους όχι ταυτόχρονα, αλλά ένα προς ένα. Για το λόγο αυτό, η διάσταση τέτοιων οξέων εκφράζεται όχι με μία, αλλά με πολλές εξισώσεις, ο αριθμός των οποίων είναι ίσος με τη βασικότητα του οξέος. Για παράδειγμα, η διάσταση του τριβασικού φωσφορικού οξέος συμβαίνει σε τρία στάδια με τον εναλλασσόμενο διαχωρισμό των κατιόντων H +:

H 3 PO 4 H + + H 2 PO 4 —

H 2 PO 4 - H + + HPO 4 2-

HPO 4 2- H + + PO 4 3-

Πρέπει να σημειωθεί ότι κάθε επόμενο στάδιο διάσπασης εμφανίζεται σε μικρότερο βαθμό από το προηγούμενο. Δηλαδή, τα μόρια H 3 PO 4 διασπώνται καλύτερα (σε μεγαλύτερο βαθμό) από τα ιόντα H 2 PO 4 -, τα οποία, με τη σειρά τους, διασπώνται καλύτερα από τα ιόντα HPO 4 2-. Το φαινόμενο αυτό σχετίζεται με αύξηση του φορτίου των όξινων υπολειμμάτων, με αποτέλεσμα να αυξάνεται η ισχύς του δεσμού μεταξύ αυτών και των θετικών ιόντων Η+.

Από τα πολυβασικά οξέα, η εξαίρεση είναι το θειικό οξύ. Δεδομένου ότι αυτό το οξύ διαχωρίζεται καλά και στα δύο στάδια, επιτρέπεται να γράψουμε την εξίσωση της διάστασής του σε ένα στάδιο:

H 2 SO 4 2H + + SO 4 2-

2. Αλληλεπίδραση οξέων με μέταλλα

Το έβδομο σημείο στην ταξινόμηση των οξέων είναι οι οξειδωτικές τους ιδιότητες. Αναφέρθηκε ότι τα οξέα είναι ασθενείς οξειδωτικοί παράγοντες και ισχυροί οξειδωτικοί παράγοντες. Η συντριπτική πλειονότητα των οξέων (σχεδόν όλα εκτός από το H 2 SO 4 (συμπυκν.) και το HNO 3) είναι ασθενείς οξειδωτικοί παράγοντες, αφού μπορούν να επιδείξουν την οξειδωτική τους ικανότητα μόνο λόγω κατιόντων υδρογόνου. Τέτοια οξέα μπορούν να οξειδώσουν μόνο εκείνα τα μέταλλα που βρίσκονται στη σειρά δραστηριότητας στα αριστερά του υδρογόνου και τα προϊόντα σχηματίζουν ένα άλας του αντίστοιχου μετάλλου και υδρογόνου. Για παράδειγμα:

H 2 SO 4 (αραιωμένο) + Zn ZnSO 4 + H 2

2HCl + Fe FeCl 2 + H 2

Όσο για τα ισχυρά οξειδωτικά οξέα, π.χ. H 2 SO 4 (συμπ.) και HNO 3, τότε ο κατάλογος των μετάλλων στα οποία δρουν είναι πολύ ευρύτερος και περιλαμβάνει όλα τα μέταλλα πριν από το υδρογόνο στη σειρά δραστηριότητας και σχεδόν τα πάντα μετά. Δηλαδή, το συμπυκνωμένο θειικό οξύ και το νιτρικό οξύ οποιασδήποτε συγκέντρωσης, για παράδειγμα, θα οξειδώσουν ακόμη και μέταλλα χαμηλής δράσης όπως ο χαλκός, ο υδράργυρος και ο άργυρος. Η αλληλεπίδραση του νιτρικού οξέος και του πυκνού θειικού οξέος με τα μέταλλα, καθώς και ορισμένες άλλες ουσίες, λόγω της ιδιαιτερότητάς τους, θα συζητηθεί ξεχωριστά στο τέλος αυτού του κεφαλαίου.

3. Αλληλεπίδραση οξέων με βασικά και αμφοτερικά οξείδια

Τα οξέα αντιδρούν με βασικά και αμφοτερικά οξείδια. Το πυριτικό οξύ, δεδομένου ότι είναι αδιάλυτο, δεν αντιδρά με βασικά οξείδια χαμηλής δράσης και αμφοτερικά οξείδια:

H 2 SO 4 + ZnO ZnSO 4 + H 2 O

6HNO 3 + Fe 2 O 3 2Fe(NO 3) 3 + 3H 2 O

H 2 SiO 3 + FeO ≠

4. Αλληλεπίδραση οξέων με βάσεις και αμφοτερικά υδροξείδια

HCl + NaOH H 2 O + NaCl

3H 2 SO 4 + 2Al(OH) 3 Al 2 (SO 4) 3 + 6H 2 O

5. Αλληλεπίδραση οξέων με άλατα

Αυτή η αντίδραση συμβαίνει εάν σχηματιστεί ένα ίζημα, ένα αέριο ή ένα σημαντικά ασθενέστερο οξύ από αυτό που αντιδρά. Για παράδειγμα:

H 2 SO 4 + Ba(NO 3) 2 BaSO 4 ↓ + 2HNO 3

CH 3 COOH + Na 2 SO 3 CH 3 COONa + SO 2 + H 2 O

HCOONa + HCl HCOOH + NaCl

6. Ειδικές οξειδωτικές ιδιότητες νιτρικών και πυκνών θειικών οξέων

Όπως αναφέρθηκε παραπάνω, το νιτρικό οξύ σε οποιαδήποτε συγκέντρωση, καθώς και το θειικό οξύ αποκλειστικά σε συμπυκνωμένη κατάσταση, είναι πολύ ισχυροί οξειδωτικοί παράγοντες. Συγκεκριμένα, σε αντίθεση με άλλα οξέα, οξειδώνουν όχι μόνο τα μέταλλα που βρίσκονται πριν από το υδρογόνο στη σειρά δραστηριότητας, αλλά και σχεδόν όλα τα μέταλλα μετά από αυτό (εκτός από την πλατίνα και τον χρυσό).

Για παράδειγμα, είναι ικανά να οξειδώνουν χαλκό, άργυρο και υδράργυρο. Ωστόσο, θα πρέπει κανείς να κατανοήσει σταθερά το γεγονός ότι ορισμένα μέταλλα (Fe, Cr, Al), παρά το γεγονός ότι είναι αρκετά ενεργά (διαθέσιμα πριν από το υδρογόνο), εντούτοις δεν αντιδρούν με πυκνό HNO 3 και συμπυκνωμένο H 2 SO 4 χωρίς θέρμανση λόγω του φαινομένου της παθητικοποίησης - μια προστατευτική μεμβράνη στερεών προϊόντων οξείδωσης σχηματίζεται στην επιφάνεια τέτοιων μετάλλων, η οποία δεν επιτρέπει σε μόρια πυκνού θειικού και συμπυκνωμένου νιτρικού οξέος να διεισδύσουν βαθιά στο μέταλλο για να συμβεί η αντίδραση. Ωστόσο, με ισχυρή θέρμανση, η αντίδραση εξακολουθεί να εμφανίζεται.

Στην περίπτωση αλληλεπίδρασης με μέταλλα, τα υποχρεωτικά προϊόντα είναι πάντα το άλας του αντίστοιχου μετάλλου και το οξύ που χρησιμοποιείται, καθώς και το νερό. Ένα τρίτο προϊόν επίσης απομονώνεται πάντα, ο τύπος του οποίου εξαρτάται από πολλούς παράγοντες, ιδίως, όπως η δραστηριότητα των μετάλλων, καθώς και η συγκέντρωση των οξέων και η θερμοκρασία αντίδρασης.

Η υψηλή οξειδωτική ικανότητα των συμπυκνωμένων θειικών και συμπυκνωμένων νιτρικών οξέων τους επιτρέπει να αντιδρούν όχι μόνο με όλα σχεδόν τα μέταλλα της σειράς δραστηριότητας, αλλά ακόμη και με πολλά στερεά αμέταλλα, ιδιαίτερα με φώσφορο, θείο και άνθρακα. Ο παρακάτω πίνακας δείχνει καθαρά τα προϊόντα της αλληλεπίδρασης θειικού και νιτρικού οξέος με μέταλλα και αμέταλλα ανάλογα με τη συγκέντρωση:

7. Μειωτικές ιδιότητες των οξέων χωρίς οξυγόνο

Όλα τα οξέα χωρίς οξυγόνο (εκτός από το HF) μπορούν να εμφανίσουν αναγωγικές ιδιότητες λόγω του χημικού στοιχείου που περιλαμβάνεται στο ανιόν υπό τη δράση διαφόρων οξειδωτικών παραγόντων. Για παράδειγμα, όλα τα υδραλογονικά οξέα (εκτός από το HF) οξειδώνονται από το διοξείδιο του μαγγανίου, το υπερμαγγανικό κάλιο και το διχρωμικό κάλιο. Σε αυτή την περίπτωση, τα ιόντα αλογονιδίου οξειδώνονται σε ελεύθερα αλογόνα:

4HCl + MnO 2 MnCl 2 + Cl 2 + 2H 2 O

18HBr + 2KMnO 4 2KBr + 2MnBr 2 + 8H 2 O + 5Br 2

14НI + K 2 Cr 2 O 7 3I 2 ↓ + 2Crl 3 + 2KI + 7H 2 O

Μεταξύ όλων των υδραλογονικών οξέων, το υδροϊωδικό οξύ έχει τη μεγαλύτερη αναγωγική δράση. Σε αντίθεση με άλλα υδραλογονικά οξέα, ακόμη και το οξείδιο του σιδήρου και τα άλατα μπορούν να το οξειδώσουν.

6HI ​​+ Fe 2 O 3 2FeI 2 + I 2 ↓ + 3H 2 O

2HI + 2FeCl 3 2FeCl 2 + I 2 ↓ + 2HCl

Το υδρόθειο οξύ H 2 S έχει επίσης υψηλή αναγωγική δράση.Ακόμα και ένας οξειδωτικός παράγοντας όπως το διοξείδιο του θείου μπορεί να το οξειδώσει.

Ας δούμε τους πιο συνηθισμένους τύπους οξέων που βρίσκονται στα σχολικά βιβλία:

Είναι εύκολο να παρατηρήσετε ότι όλοι οι τύποι οξέων έχουν κοινό χαρακτηριστικό την παρουσία ατόμων υδρογόνου (Η), που έρχεται πρώτο στον τύπο.

Προσδιορισμός του σθένους ενός υπολείμματος οξέος

Από την παραπάνω λίστα μπορεί να φανεί ότι ο αριθμός αυτών των ατόμων μπορεί να διαφέρει. Τα οξέα που περιέχουν μόνο ένα άτομο υδρογόνου ονομάζονται μονοβασικά (νιτρικό, υδροχλωρικό και άλλα). Το θειικό, το ανθρακικό και το πυριτικό οξύ είναι διβασικά, αφού οι τύποι τους περιέχουν δύο άτομα Η. Ένα μόριο τριβασικού φωσφορικού οξέος περιέχει τρία άτομα υδρογόνου.

Έτσι, η ποσότητα του Η στον τύπο χαρακτηρίζει τη βασικότητα του οξέος.

Το άτομο ή η ομάδα ατόμων που γράφονται μετά το υδρογόνο ονομάζονται υπολείμματα οξέος. Για παράδειγμα, στο υδροσουλφιδικό οξύ το υπόλειμμα αποτελείται από ένα άτομο - S, και σε φωσφορικό, θείο και πολλά άλλα - από δύο, και ένα από αυτά είναι απαραίτητα οξυγόνο (Ο). Σε αυτή τη βάση, όλα τα οξέα χωρίζονται σε οξυγονούχα και χωρίς οξυγόνο.

Κάθε υπόλειμμα οξέος έχει ένα ορισμένο σθένος. Είναι ίσος με τον αριθμό των ατόμων Η στο μόριο αυτού του οξέος. Το σθένος του υπολείμματος HCl είναι ίσο με ένα, αφού είναι μονοβασικό οξύ. Τα υπολείμματα νιτρικού, υπερχλωρικού και νιτρώδους οξέος έχουν το ίδιο σθένος. Το σθένος του υπολείμματος θειικού οξέος (SO 4) είναι δύο, αφού στον τύπο του υπάρχουν δύο άτομα υδρογόνου. Υπόλειμμα τρισθενούς φωσφορικού οξέος.

Όξινα υπολείμματα - ανιόντα

Εκτός από το σθένος, τα υπολείμματα οξέος έχουν φορτία και είναι ανιόντα. Τα φορτία τους αναφέρονται στον πίνακα διαλυτότητας: CO 3 2−, S 2−, Cl− και ούτω καθεξής. Σημείωση: το φορτίο του όξινου υπολείμματος είναι αριθμητικά το ίδιο με το σθένος του. Για παράδειγμα, στο πυριτικό οξύ, ο τύπος του οποίου είναι H 2 SiO 3, το όξινο υπόλειμμα SiO 3 έχει σθένος II και φορτίο 2-. Έτσι, γνωρίζοντας το φορτίο του όξινου υπολείμματος, είναι εύκολο να προσδιοριστεί το σθένος του και το αντίστροφο.

Συνοψίζω. Τα οξέα είναι ενώσεις που σχηματίζονται από άτομα υδρογόνου και όξινα υπολείμματα. Από τη σκοπιά της θεωρίας της ηλεκτρολυτικής διάστασης, μπορεί να δοθεί ένας άλλος ορισμός: τα οξέα είναι ηλεκτρολύτες, σε διαλύματα και τήγματα των οποίων υπάρχουν κατιόντα υδρογόνου και ανιόντα υπολειμμάτων οξέος.

Συμβουλές

Οι χημικοί τύποι των οξέων συνήθως μαθαίνονται από την καρδιά, όπως και τα ονόματά τους. Εάν έχετε ξεχάσει πόσα άτομα υδρογόνου υπάρχουν σε μια συγκεκριμένη φόρμουλα, αλλά ξέρετε πώς φαίνεται το όξινο υπόλειμμά του, ο πίνακας διαλυτότητας θα σας βοηθήσει. Το φορτίο του υπολείμματος συμπίπτει κατά συντελεστή με το σθένος, και αυτό με την ποσότητα του Η. Για παράδειγμα, θυμάστε ότι το υπόλοιπο ανθρακικού οξέος είναι CO 3 . Χρησιμοποιώντας τον πίνακα διαλυτότητας, προσδιορίζετε ότι το φορτίο του είναι 2-, που σημαίνει ότι είναι δισθενές, δηλαδή το ανθρακικό οξύ έχει τον τύπο H 2 CO 3.

Συχνά υπάρχει σύγχυση με τους τύπους θειικού και θείου, καθώς και νιτρικού και νιτρώδους οξέος. Και εδώ υπάρχει ένα σημείο που διευκολύνει τη μνήμη: το όνομα του οξέος από το ζεύγος στο οποίο υπάρχουν περισσότερα άτομα οξυγόνου τελειώνει σε -naya (θειικό, νιτρικό). Ένα οξύ με λιγότερα άτομα οξυγόνου στον τύπο έχει ένα όνομα που τελειώνει σε -istaya (θειώδες, αζωτούχο).

Ωστόσο, αυτές οι συμβουλές θα σας βοηθήσουν μόνο εάν σας είναι γνωστές οι φόρμουλες οξέος. Ας τα επαναλάβουμε ξανά.