Главная · Измерения · Как зависит сопротивление конденсатора переменному току. Реактивное сопротивление конденсатора

Как зависит сопротивление конденсатора переменному току. Реактивное сопротивление конденсатора

Емкостное сопротивление это сопротивление переменному току, которое оказывает электрическая емкость. Ток в цепи с емкостью опережает напряжение по фазе на 90 градусов. Емкостное сопротивление является реактивным, то есть потерь энергии в нем не происходит как, например, в активном сопротивлении. Емкостное сопротивление обратно пропорционально частоте переменного тока.

Проведем эксперимент, для этого нам понадобится. Конденсатор лампа накаливания и два источника напряжения один постоянного тока другой переменного. Для начала построим цепь, состоящую из источника постоянного напряжения, лампы и конденсатора все это включено последовательно.

Рисунок 1 — конденсатор в цепи постоянного тока

При включении тока лампа вспыхнет на короткое время, а потом погаснет. Так как для постоянного тока конденсатор имеет большое электрическое сопротивление. Оно и понятно ведь между обкладками конденсатора находится диэлектрик, через который постоянный ток не способен пройти. А вспыхнет лампа по тому, что в момент включения источника постоянного напряжения идет кратковременный импульс тока, заряжающий конденсатор. А раз ток идет значит и лампа светится.

Теперь в этой цепи заменим источник постоянного напряжения на генератор переменного. При включении такой цепи мы обнаружим, что лампа буде светится непрерывно. Происходит это по тому, что конденсатор в цепи переменного тока заряжается за четверть периода. Когда напряжение на нем достигнет амплитудного значения, напряжение на нем начинает уменьшаться, и он будет, разряжается следующие четверть периода. В следующие пол периода процесс повторится снова, но напряжение в этот раз уже будет отрицательным.

Таким образом, в цепи непрерывно течет ток хотя он и меняет при этом свое направление дважды за период. Но через диэлектрик конденсатора заряды не проходят. Как же это происходит.

Представим себе конденсатор, подключаемый к источнику постоянного напряжения. При включении, источник убирает электроны с одной обкладки, тем самым создавая на ней положительный заряд. А на второй обкладке добавляет электронов, создавая тем самым равный по величине, но противоположный по знаку отрицательный заряд. В момент перераспределения зарядов в цепи протекает ток заряда конденсатора. Хотя электроны при этом не движутся через диэлектрик конденсатора.

Рисунок 2 — заряд конденсатора

Если теперь из цепи исключить конденсатор, то лампа будет светить ярче. Это говорит о том, что емкость создает сопротивление, току ограничивая его величину. Происходит это из-за того что при заданной частоте тока значение ёмкости мало и она не успевает накопить достаточно энергии в виде зарядов на своих обкладках. И при разряде будет протекать ток меньше чем способен развить источник тока.

Отсюда следует, что емкостное сопротивление зависит как от частоты, так и от величины емкости конденсатора.

Формула 1 — емкостное сопротивление

Конденсатор является одним из наиболее распространённых элементов электронных схем. Типы конденсаторов, некоторые их параметры, такие, как сопротивление конденсатора, рассмотрены в настоящей статье.

Можно сказать, что два металлических электрода, разделенных слоем воздуха, и есть конденсатор. Каждая из пластин имеет свой вывод и может быть подключена к электрической цепи. Такое устройство обладает определенными характеристиками, и одной из них является сопротивление конденсатора.

Конденсатор или, как его ещё называют, емкость, является очень любопытным устройством. Достаточно сказать, что он не пропускает Если посмотреть на прохождение постоянного тока с этой точки зрения, то сопротивление конденсатора является очень большим, практически бесконечным для постоянного тока.

В то же время в первый момент при подключении емкости к цепи постоянного тока происходит ее заряд. Внутри нее протекают сложные процессы. После того как емкость зарядится, протекание тока практически прекращается. Но здесь есть один нюанс, обусловленный качеством диэлектрика. Каким бы хорошим диэлектрик ни был, всё же через него протекает мизерный ток. Называется он током утечки.

Именно ток утечки служит показателем качества диэлектрика, используемого при изготовлении конденсаторов. Чем диэлектрик лучше, тем ток утечки меньше. Здесь можно рассмотреть одно обстоятельство: есть величина напряжения, до которой заряжена емкость, есть ток утечки, который протекает через этот заряженный элемент. Значит, по закону Ома можно рассчитать сопротивление конденсатора. Оно будет большим, токи утечки у современных емкостей составляют доли микроампер.

Немного по-другому выглядит картина, когда конденсатор находится под воздействием переменного тока. Ток свободно протекает через емкость. Объясняется это тем, что постоянно происходит процесс разрядки-зарядки конденсатора. А любой процесс протекания тока связан с его потерями из-за наличия сопротивления, в данном случае кроме активного сопротивления проводов присутствует емкостное сопротивление конденсатора, обусловленное именно процессами его зарядки и разрядки.

Электрические свойства готового изделия зависят от многих факторов. К ним относятся форма, геометрические размеры, тип диэлектрика. Существуют различные типы конденсаторов, в качестве диэлектрика в них используются вакуум, воздух, пластик, слюда, бумага, стекло, керамика, алюминий-электролит, тантал-электролит.

Два последних типа конденсаторов называют электролитическими, они обычно обладают повышенной емкостью. Другие конденсаторы называются по типу диэлектрика - бумажные, керамические, стеклянные. У каждого из них свои особенности, свое поведение при различных параметрах электрического тока, свои характеристики и применение.

Так, чаще всего применяются в цепях для фильтрации помех высокой частоты, электролитические - для фильтрации помех на низких частотах. А вместе, при параллельном соединении керамического и электролитического конденсаторов, получается самый распространенный фильтр, используемый практически во всех схемах. Во всех случаях емкость является фиксированной величиной, такой, как 0,15 мкФ.

Необходимо отметить наличие конденсаторов переменной емкости, в них емкость меняется в зависимости от положения регулирующей ручки. Достигается это изменением взаимного перекрытия пластин конденсатора. Как частный случай конденсаторов переменной емкости существуют так называемые подстроечные конденсаторы. В них емкость тоже может меняться - но в ограниченных пределах и только на этапе регулировки аппаратуры.

Номенклатура используемых конденсаторов просто огромна - как по типу диэлектрика, так и по конструктивному исполнению.

Конденсаторы, как и резисторы, относятся к наиболее многочисленным элементам радиотехнических устройств. Основное свойство конденсаторов, это способность накапливать электрический заряд . Основной параметр конденсатора это его емкость .

Емкость конденсатора будет тем значительнее, чем больше площадь его обкладок и чем тоньше слой диэлектрика между ними. Основной единицей электрической емкости является фарада (сокращенно Ф), названная так в честь английского физика М. Фарадея. Однако 1 Ф - это очень большая емкость. Земной шар, например, обладает емкостью меньше 1 Ф. В электро- и радиотехнике пользуются единицей емкости, равной миллионной доле фарады, которую называют микрофарадой (сокращенно мкФ) .

Емкостное сопротивление конденсатора переменному току зависит от его емкости и частоты тока: чем больше емкость конденсатора и частота тока, тем меньше его емкостное сопротивление.

Керамические конденсаторы обладают сравнительно небольшими емкостями - до нескольких тысяч пикофарад. Их ставят в те цепи, в которых течет ток высокой частоты (цепь антенны, колебательный контур), для связи между ними.



Простейший конденсатор представляет собой два проводника электрического тока, например: - две металлические пластины, называемые обкладками конденсатора, разделенные диэлектриком, например: - воздухом или бумагой. Чем больше площадь обкладок конденсатора и чем ближе они расположены друг к другу, тем больше электрическая емкость этого прибора. Если к обкладкам конденсатора подключить источник постоянного тока, то в образовавшейся цепи возникнет кратковременный ток и конденсатор зарядится до напряжения, равного напряжению источника тока. Вы можете спросить: почему в цепи, где есть диэлектрик, возникает ток? Когда мы присоединяем к конденсатору источник тока, электроны в проводниках образовавшейся цепи начинают двигаться в сторону положительного полюса источника тока, образуя кратковременный поток электронов во всей цепи. В результате обкладка конденсатора, которая соединена с положительным полюсом источника тока, обедняется свободными электронами и заряжается положительно, а другая обкладка обогащается свободными электронами и, следовательно, заряжается отрицательно. Как только конденсатор зарядится, кратковременный ток в цепи, называемый током зарядки конденсатора, прекратится.

Если источник тока отключить от конденсатора, то конденсатор окажется заряженным. Переходу избыточных электронов с одной обкладки на другую препятствует диэлектрик. Между обкладками конденсатора тока не будет, а накопленная им электрическая энергия будет сосредоточена в электрическом поле диэлектрика. Но стоит обкладки заряженного конденсатора соединить каким-либо проводником «лишние» электроны отрицательно заряженной обкладки перейдут по этому проводнику на другую обкладку, где их недостает, и конденсатор разрядится. В этом случае в образовавшейся цепи также возникает кратковременный ток, называемый током разрядки конденсатора. Если емкость конденсатора большая, и он заряжен до значительного напряжения, момент его разрядки сопровождается появлением значительной искры и треска. Свойство конденсатора накапливать электрические заряды и разряжаться через подключенные к нему проводники используется в колебательном контуре радиоприемника.

Конденса́тор (от лат. condensare - «уплотнять», «сгущать») - двухполюсник с определённым значением ёмкости и малой проводимостью; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом. В простейшем варианте конструкция состоит из двух электродов в форме пластин (называемых обкладками ), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок (см. рис.). Практически применяемые конденсаторы имеют много слоёв диэлектрика и многослойные электроды, или ленты чередующихся диэлектрика и электродов, свёрнутые в цилиндр или параллелепипед со скруглёнными четырьмя рёбрами (из-за намотки). Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течёт, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора, замыкаясь так называемым током смещения.

С точки зрения метода комплексных амплитуд конденсатор обладает комплексным импедансом

,

Где j - мнимая единица, ω - циклическая частота (рад/с ) протекающего синусоидального тока, f - частота в Гц , C - ёмкость конденсатора (фарад ). Отсюда также следует, что реактивное сопротивление конденсатора равно: . Для постоянного тока частота равна нулю, следовательно, реактивное сопротивление конденсатора бесконечно (в идеальном случае).

Резонансная частота конденсатора равна

При f > f p конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах f < f p , на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2-3 раза ниже резонансной.

Конденсатор может накапливать электрическую энергию. Энергия заряженного конденсатора:

где U - напряжение (разность потенциалов), до которого заряжен конденсатор.

При переменном напряжении на реальном конденсаторе кроме тока смещения имеются небольшие токи проводимости, через толщу диэлектрика (объемный ток) и по поверхности (поверхностный ток).Токи проводимости и поляризацию диэлектрика сопровождают потери энергии.

Таким образом, в реальном конденсаторе наряду с изменением энергии электрического поля (это характеризует реактивная мощность Q ) из-за несовершенства диэлектрика идет необратимый процесс преобразования электрической энергии в тепло, скорость которого выражается активной мощностью Р . Поэтому в схеме замещения реальный конденсатор должен быть представлен активным и реактивным элементами.

Деление реального конденсатора на два элемента - это расчетный прием, так как конструктивно их выделить нельзя. Однако такую же схему замещения имеет реальная цепь из двух элементов, один из которых характеризуется только активной мощностью Р (Q = 0), другой - реактивной (емкостной) мощностью Q(P = 0).

Схема замещения конденсатора с параллельным соединением элементов

Реальный конденсатор (с потерями) можно представить эквивалентной схемой параллельного соединения активной G и емкостной B с проводимостей (рис. 13.15), причем активная проводимость определяется мощностью потерь в конденсаторе G = Р/U c 2 , а емкость - конструкцией конденсатора. Предположим, что проводимости G и В с для такой цепи известны, а напряжение имеет уравнение

u = Umsinωt .

Требуется определить токи в цепи и мощность. Исследование цепи с активным сопротивлением и цепи с емкостью показало, что при синусоидальном напряжении токи в них так же синусоидальны. При параллельном соединении ветвей G и В с, согласно первому закону Кирхгофа, общий ток i равен сумме токов в ветвях с активной и емкостной проводимостями:

i = i G + i c , (13.30)

Учитывая, что ток i G совпадает по фазе с напряжением, а ток i c опережает напряжение на четверть периода, уравнение общего тока можно записать в следующем виде:


Векторная диаграмма токов в цепи с конденсатором

Для определения действующей величины общего тока I методом векторного сложения построим векторную диаграмму согласно уравнению

I = I G + I C

Действующие величины составляющих тока:

I G = GU (13.31)

I C = B C U (13.32)

Первым на векторной диаграмме изображается вектор напряжения U (рис. 13.16, а), его направление совпадает с положительным направлением оси, от которой отсчитываются фазовые углы (начальная фаза напряжения φ a =0). Вектор I G совпадает по направлению с вектором U, а вектор I C направлен перпендикулярно вектору U с положительным углом. Из векторной диаграммы видно, что вектор общего напряжения отстает от вектора общего тока на угол φ , величина которого больше нуля, но меньше 90º. Вектор I является гипотенузой прямоугольного треугольника, катеты которого - составляющие его векторы I G и I C:

При напряжении u = U m sinωt соответствии с векторной диаграммой уравнение тока

i = I m sin(ωt + φ )

Треугольник проводимостей для конденсатора

Стороны треугольников токов, выраженные в единицах тока, разделим на напряжение U. Получим подобный треугольник проводимостей (рис. 13.16, б), катетами которого являются активная G = I G /U и емкостная В с = I с /U проводимости, а гипотенузой - полная проводимость цепи Y = I/U . Из треугольника проводимостей

Связь между действующими величинами напряжения и тока выражается формулами

I = UY

U = I/Y (13.35)

Из треугольников токов и проводимостей определяют величины

cos φ = I G /I = G/Y; sinφ = I c /I = B c /Y; tgφ = I C /I G = B c /G. (13.36)

Мощность цепи с конденсатором

Выражение мгновенной мощности реального конденсатора

p = ui = U m sinωt * I m sin(ωt+φ)

совпадает с выражением мгновенной мощности катушки. Рассуждения, аналогичные тем, которые сделаны при рассмотрении графика мгновенной мощности (см. рис.13. 11), можно провести и для реального конденсатора на основе графика рис. 13.17. Величины активной, реактивной и полной мощностей выражаются теми же формулами, какие были получены для катушки [см. (13.19) — (13.22)]. Это нетрудно показать, если стороны треугольника токов, выраженные в единицах тока, умножить на напряжение U. В результате умножения получится подобный треугольник мощностей (рис. 13.16, в), катетами которого являются мощности; активная

P = UI G = UIcosφ

реактивная

Q = UI C = UIsinφ

полная

Схема замещения конденсатора с последовательным соединением элементов

Реальный конденсатор, так же как и , на расчетной схеме может быть представлен последовательным соединением двух участков: с активным R и емкостным Х с сопротивлениями. На рис. 13.18, а такая схема показана в сравнении со схемой параллельного соединения активной и емкостной проводимостей (рис.13. 18,6). Все выводы и формулы, полученные для катушки, остаются в силе и для конденсатора при условии замены индуктивного сопротивления емкостным. Конденсаторы, применяемые на практике, имеют относительно малые потери энергии. Поэтому в схемах замещения они представлены чаще всего только реактивной частью, т. е. емкостью С Участки цепи, где последовательно соединены отдельные элементы - резистор R и конденсатор С, имеют такую схему замещения, как показано на рис. 13.18, а. Если вам интересно прочитайте которые применяются в промышленности.

Активное сопротивление, индуктивность и емкость в цепи переменного тока.

Изме­нения силы тока, напряжения и э. д. с. в цепи переменного тока происходят с одинаковой частотой, но фазы этих изменений, вооб­ще говоря, различны. Поэтому если начальную фазу силы тока ус­ловно принять за нуль, то начальная фаза напряжения будет иметь некоторое значение φ. При таком условии мгновенные значения силы тока и нап­ряжения и будут выражаться следующими формулами:

i = I m sinωt

u = U m sin(ωt + φ)

a) Активное сопротивление в цепи переменного тока. Сопротивление цепи, которое обу­словливает безвозвратные потери элект­рической энергии на тепловое действие тока, называют активным . Это сопротив­ление для тока низкой частоты можно счи­тать равным сопротивлению R этого же проводника постоянному току.

В цепи переменного тока, имеющей только активное сопротивле­ние, например, в лампах накаливания, нагревательных приборах и т. п., сдвиг фаз между напряжением и током равен нулю, т. е. φ = 0. Это означает, что ток и напряжение в такой цепи изменяются в оди­наковых фазах, а электрическая энергия полностью расходуется на тепловое действие тока.

Будем счи­тать, что напряжение на зажимах цепи меняется по гармоническому закону: и = U т cos ωt.

Как и в случае постоянного тока, мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения. Поэтому для нахождения мгновенного значе­ния силы тока можно применить закон Ома:

по фазе с колебаниями напряже­ния.

b) Катушка индуктивности в цепи переменного тока. Включение в цепь переменного тока катушки с индуктивностью L проявляется как увеличение сопротивления цепи. Объясняется это тем, что при переменном токе в катушке все время действует э. д. с. самоиндукции, ослабляющая ток. Сопротивление X L , которое обусловливается явлением самоиндукции, называют индуктивным сопротивлением. Так как э. д. с. само­индукции тем больше, чем больше индуктивность цепи и чем быст­рее изменяется ток, то индуктивное сопротивление прямо пропорционально индуктивности цепи L и круговой частоте переменного тока ω: X L = ωL.

Определим силу тока в цепи, содержащей катушку, активным сопротивлением которой можно пренебречь. Для это­го предварительно найдем связь между напряжением на катушке и ЭДС самоиндукции в ней. Если сопротивление катушки равно нулю, то и напряженность электрического поля внутри про­водника в любой момент времени должна быть равна нулю. Иначе сила тока, согласно закону Ома, была бы бесконечно большой.

Равенство нулю напряженности поля оказывается возможным потому, что напряженность вих­ревого электрического поля E i , порождаемого переменным магнитным полем, в каждой точке равна по модулю и противоположна по направлению напряженности кулоновского поля Е к, создаваемого в про­воднике зарядами, расположенными на зажимах источни­ка и в проводах цепи.

Из равенства E i = -Е к следует, что удельная работа вихревого поля (т. е. ЭДС самоиндукции e i) равна по моду­лю и противоположна по знаку удельной работе кулонов­ского поля . Учитывая, что удельная работа кулоновского поля равна напряжению на концах катушки, можно запи­сать: e i = -и.

При изменении силы тока по гармоническому закону i = I m sin соsωt, ЭДС самоиндукции равна: е i = -Li" = -LωI m cos ωt. Так как e i = -и, то напряжение на концах катушки ока­зывается равным

и = LωI m cos ωt = LωI m sin (ωt + π/2) = U m sin (ωt + π/2)

гдеU m = LωI m - амплитуда напряжения.

Следовательно, колебания напряжения на катушке опе­режают по фазе колебания силы тока на π/2, или, что то же самое, колебания силы тока отстают по фазе от колеба­ний напряжения на π/2.

Если ввести обозначение X L = ωL, то получим . Величину X L , равную произведению циклической час­тоты на индуктивность, называют индуктивным сопротив­лением. Согласно формуле , значение силы тока связано с значением напряжения и ин­дуктивным сопротивлением соотношением, подобным за­кону Ома для цепи постоянного тока.

Индуктивное сопротивление зависит от частоты ω. По­стоянный ток вообще «не замечает» индуктивности катушки. При ω = 0 индуктивное сопротивление равно нулю. Чем быстрее меняется напряжение, тем больше ЭДС са­моиндукции и тем меньше амплитуда силы тока. Следует отметить, что напряжение на индуктивном со­противлении опережает по фазе ток .

c) Конденсатор в цепи переменного тока. Постоянный ток не проходит через конденсатор, так как между его обкладками находится диэлектрик. Если конденсатор включить в цепь постоянного тока, то после зарядки конденсатора ток в цепи прекратится.

Пусть конденсатор включен в цепь переменного тока. Заряд конденсатора (q=CU) вследствие изменения напряжения непрерыв­но изменяется, поэтому в цепи течет переменный ток. Сила тока бу­дет тем больше, чем больше емкость конденсатора и чем чаще про­исходит его перезарядка, т. е. чем больше частота переменного тока.

Сопротивление, обусловленное наличием электроемкости в цепи переменного тока, называют емкостным сопротивле­нием Х с . Оно обратно пропорционально емкости С и круговой частоте ω: Х с =1/ωС.

Установим, как меняется со временем сила тока в цепи, содержащей только конденсатор, если сопротивлением прово­дов и обкладок конденсатора можно пренебречь.

Напряжение на конденсаторе u = q/C равно напряжению на концах цепи u = U m cosωt.

Следовательно, q/C = U m cosωt. Заряд конденсатора меняется по гармоническому закону:

q = CU m cosωt.

Сила тока, представляющая со­бой производную заряда по вре­мени, равна:

i = q" = -U m Cω sin ωt =U m ωC cos(ωt + π/2).

Следовательно, колебания си­лы тока опережают по фазе ко­лебания напряжения на конден­саторе на π/2.

Величину Х с , обратную произведению ωС циклической частоты на электрическую емкость конденсатора, называют емкостным сопротивлением. Роль этой величины анало­гична роли активного сопротивления R в законе Ома. Значение силы тока связано с значением напряжения на конденсаторе точно так же, как связаны согласно закону Ома сила тока и напряжение для участка цепи постоянного тока. Это и поз­воляет рассматривать величину Х с как сопротивление кон­денсатора переменному току (емкостное сопротивление).

Чем больше емкость конденсатора, тем больше ток пе­резарядки. Это легко обнаружить по увеличению накала лампы при увеличении емкости конденсатора. В то время как сопротивление конденсатора постоянному току беско­нечно велико, его сопротивление переменному току имеет конечное значение Х с. С увеличением емкости оно умень­шается. Уменьшается оно и с увеличением частоты ω.

В заключение отметим, что на протяжении четверти пе­риода, когда конденсатор заряжается до максимального напряжения, энергия поступает в цепь и запасается в кон­денсаторе в форме энергии электрического поля. В следую­щую четверть периода, при разрядке конденсатора, эта энергия возвращается в сеть.

Из сравнения формул X L = ωL и Х с =1/ωС видно, что катушки ин­дуктивности. представляют собой очень большое сопротивление для тока высокой частоты и небольшое для тока низкой частоты, а конденсаторы - наоборот. Индуктивное Х L и емкостное Х C сопротивления называют реактивными.

d) Закон ома для электрической цепи переменного тока.

Рассмотрим теперь более общий случай электрической цепи, в которой последовательно соединены проводник с активным сопротивлением R и малой индуктивностью, катушка с большой индуктивностью L и малым активным сопротивлением и конден­сатор емкостью С

Мы видели, что при включении по отдельности в цепь активного сопротивления R, конденсатора емкостью С или катуш­ки с индуктивностью L амплитуда силы тока определяется соот­ветственно формулами:

; ; I m = U m ωC .

Амплитуды же на­пряжений на активном сопротивлении, катушке индуктивности и конденсаторе связаны с амплитудой силы тока так: U m = I m R; U m = I m ωL;

В цепях постоянного тока напряжение на концах цепи равно сумме напряжений на отдельных последовательно соединенных участках цепи. Однако, если измерить результирующее напряже­ние на контуре и напряжения на отдельных элементах цепи, ока­жется, что напряжение на контуре (действующее значение) не равно сумме напряжений на отдельных элементах. Почему это так? Дело в том, что гармонические колебания напряжения на различных участках цепи сдвинуты по фазе друг относительно друга.

Действительно, ток в любой момент времени одинаков во всех участках цепи. Это значит, что одинаковы амплитуды и фазы токов, протекающих по участкам с емкостным, индуктивным и активным сопротивлениями. Однако только на активном сопро­тивлении колебания напряжения и тока совпадают по фазе. На конденсаторе колебания напряжения отстают по фазе от колеба­ний тока на π/2, а на катушке индуктивности колеба­ния напряжения опережают колебания тока на π/2. Если учесть сдвиг фаз между складываемыми напряжениями, то окажется, что


Для получения этого равенства нужно уметь скла­дывать колебания напряжений, сдвинутые по фазе друг относительно друга. Проще всего выполнить сложение нескольких гар­монических колебаний с помощью векторных диаграмм. Идея метода основана на двух довольно простых положениях.

Во-первых, проекция вектора с модулем х m вращающегося с постоянной угловой скоростью совершает гармонические колебания: х = х m cosωt

Во-вторых, при сложении двух векторов проекция суммарного векто­ра равна сумме проекций складываемых векторов.

Векторная диаграмма электрических колебаний в цепи, изображенной на рисунке, позволит нам получить соотношение между амплитудой силы тока в этой цепи и амплитудой напряжения. Так как сила тока одинакова во всех участках цепи, то построение век­торной диаграммы удобно начать с вектора силы тока I m . Этот вектор изобра­зим в виде горизонтальной стрелки. Напряжение на активном со­противлении совпадает по фазе с силой тока. Поэтому вектор U mR , должен совпадать по направлению с вектором I m . Его модуль равен U mR = I m R

Колебания напряжения на индуктивном сопротивлении опережают колебания силы тока на π/2, и соответствующий вектор U m L должен быть повернут относительно вектора I m на π/2. Его модуль равен U m L = I m ωL. Если считать, что положительному сдвигу фаз соответствует поворот вектора против часовой стрелки, то вектор U m L следует повернуть налево. (Можно было бы, конечно, поступить и наоборот.)

Его модуль равен U mC =I m /ωC . Для нахождения вектора суммарного напряжения U m нужно сложить три вектора: 1) U mR 2) U m L 3) U mC

Вначале удобнее сложить два вектора: U m L и U mC

Модуль этой суммы равен , если ωL > 1/ωС. Именно такой случай изображен на рисунке. После этого, сложив вектор (U m L + U mC) с вектором U mR получим вектор U m , изображающий колебания напряжения в сети. По теореме Пифагора:



Из последнего равенства можно легко найти амплитуду силы тока в цепи:


Таким образом, благодаря сдвигу фаз между напряжениями на различных участках цепи полное сопротивление Z цепи, изобра­женной на рисунке, выражается так:


От амплитуд силы тока и напряжения можно перейти к дейст­вующим значениям этих величин:


Это и есть закон Ома для переменного тока в цепи, изображен­ной на рисунке 43. Мгновенное значение силы тока меняется со временем гармонически:

i = I m cos (ωt+ φ), где φ - разность фаз между силой тока и напряжением в сети. Она зависит от частоты ω и параметров цепи R, L, С.

e) Резонанс в электрической цепи. При изучении вынужденных механических колебаний мы по­знакомились с важным явлением - резонансом. Резонанс наблю­дается в том случае, когда собственная частота колебаний систе­мы совпадает с частотой внешней силы. При малом трении происходит резкое увеличение амплитуды установившихся вы­нужденных колебаний. Совпадение законов механи­ческих и электромагнитных ко­лебаний сразу же позволяет сделать заключение о возмож­ности резонанса в электриче­ской цепи, если эта цепь представляет, собой колеба­тельный контур, обладающий определенной собственной ча­стотой колебаний.

Амплитуда тока при вы­нужденных колебаниях в кон­туре, совершающихся под дей­ствием внешнего гармонически изменяющегося напряжения, определяется формулой:


При фиксированном напря­жении и заданных значениях R, L и С, сила тока достигает мак­симума при частоте ω, удовлетворяющей соотношению


Эта амплитуда особенно велика при малом R. Из этого уравнения можно определить значение циклической частоты переменного тока, при которой сила тока максимальна:


Эта частота совпадает с частотой свободных колебаний в конту­ре с малым активным сопротивлением.

Резкое возрастание амплитуды вынужденных колебаний тока в колебательном контуре с малым активным сопротивлением про­исходит при совпадении частоты внешнего переменного напря­жения с собственной частотой колебательного контура. В этом состоит явление резонанса в электрическом колебательном кон­туре.

Одновременно с ростом силы тока при резонансе резко воз­растают напряжения на конденсаторе и катушке индуктивности. Эти напряжения становятся одинаковыми и во много раз пре­восходят внешнее напряжение.

Действительно,

U м, С,рез =

U м, L ,рез =

Внешнее напряжение связано с резонансным током так:

U м = . Если тоU m , C ,рез = U m , L ,рез >> U m

При резонансе сдвиг фаз между током и напряжением стано­вится равным нулю.

Действительно, колебания напряжения на катушке индуктив­ности и конденсаторе всегда происходят в противофазе. Резо­нансные амплитуды этих напряжений одинаковы. В результате напряжения на катушке и конденсаторе полностью компенсиру­ют друг друга, и падение напряжения происходит только на активном сопротивлении.

Равенство нулю сдвига фаз между напряжением и током при резонансе обеспе­чивает оптимальные условия для поступления энергии от источ­ника переменного напряжения в цепь. Здесь полная аналогия с механическими колебаниями: при резонансе внешняя сила (ана­лог напряжения в цепи) совпадает по фазе со скоростью (аналог силы тока).