Ev · Kurulum · Logaritmalar farklı tabanlara nasıl bölünür? Logaritmik ifadeler. örnekler

Logaritmalar farklı tabanlara nasıl bölünür? Logaritmik ifadeler. örnekler

Gizliliğinizin korunması bizim için önemlidir. Bu nedenle bilgilerinizi nasıl kullandığımızı ve sakladığımızı açıklayan bir Gizlilik Politikası geliştirdik. Lütfen gizlilik uygulamalarımızı inceleyin ve herhangi bir sorunuz varsa bize bildirin.

Kişisel bilgilerin toplanması ve kullanılması

Kişisel bilgiler, belirli bir kişiyi tanımlamak veya onunla iletişim kurmak için kullanılabilecek verileri ifade eder.

Bizimle iletişime geçtiğinizde istediğiniz zaman kişisel bilgilerinizi vermeniz istenebilir.

Aşağıda toplayabileceğimiz kişisel bilgi türlerine ve bu bilgileri nasıl kullanabileceğimize dair bazı örnekler verilmiştir.

Hangi kişisel bilgileri topluyoruz:

  • Siteye bir başvuru gönderdiğinizde adınız, telefon numaranız, e-posta adresiniz vb. gibi çeşitli bilgileri toplayabiliriz.

Kişisel bilgilerinizi nasıl kullanıyoruz:

  • Topladığımız kişisel bilgiler, benzersiz teklifler, promosyonlar, diğer etkinlikler ve yaklaşan etkinlikler konusunda sizinle iletişim kurmamıza olanak tanır.
  • Zaman zaman kişisel bilgilerinizi önemli bildirimler ve iletişimler göndermek için kullanabiliriz.
  • Kişisel bilgileri, sunduğumuz hizmetleri geliştirmek ve size hizmetlerimizle ilgili tavsiyeler sunmak amacıyla denetimler, veri analizi ve çeşitli araştırmalar yapmak gibi şirket içi amaçlarla da kullanabiliriz.
  • Bir ödül çekilişine, yarışmaya veya benzer bir promosyona katılırsanız, sağladığınız bilgileri bu tür programları yönetmek için kullanabiliriz.

Bilgilerin üçüncü şahıslara açıklanması

Sizden aldığımız bilgileri üçüncü şahıslara açıklamıyoruz.

İstisnalar:

  • Gerekirse - yasaya, adli prosedüre uygun olarak, yasal işlemlerde ve/veya kamunun talepleri veya Rusya Federasyonu topraklarındaki hükümet yetkililerinin talepleri temelinde - kişisel bilgilerinizi ifşa etmek. Ayrıca, bu tür bir açıklamanın güvenlik, kanun yaptırımı veya diğer kamu önemi amaçları açısından gerekli veya uygun olduğunu tespit edersek, hakkınızdaki bilgileri de açıklayabiliriz.
  • Yeniden yapılanma, birleşme veya satış durumunda topladığımız kişisel bilgileri ilgili halef üçüncü tarafa aktarabiliriz.

Kişisel bilgilerin korunması

Kişisel bilgilerinizi kayıp, hırsızlık ve kötüye kullanımın yanı sıra yetkisiz erişime, ifşa edilmeye, değiştirilmeye ve imhaya karşı korumak için idari, teknik ve fiziksel önlemler alıyoruz.

Şirket düzeyinde gizliliğinize saygı duymak

Kişisel bilgilerinizin güvende olduğundan emin olmak için gizlilik ve güvenlik standartlarını çalışanlarımıza aktarıyor ve gizlilik uygulamalarını sıkı bir şekilde uyguluyoruz.

b sayısının (b > 0) a tabanına (a > 0, a ≠ 1) logaritması– b'yi elde etmek için a sayısının yükseltilmesi gereken üs.

b'nin 10 tabanındaki logaritması şu şekilde yazılabilir: günlük(b) ve e tabanına göre logaritma (doğal logaritma) ln(b).

Logaritma problemlerini çözerken sıklıkla kullanılır:

Logaritmanın özellikleri

Dört ana var logaritmanın özellikleri.

a > 0, a ≠ 1, x > 0 ve y > 0 olsun.

Özellik 1. Çarpımın logaritması

Ürünün logaritması logaritmaların toplamına eşittir:

log a (x ⋅ y) = log a x + log a y

Özellik 2. Bölümün logaritması

Bölümün logaritması logaritma farkına eşittir:

log a (x / y) = log a x – log a y

Özellik 3. Gücün logaritması

Derecenin logaritması gücün ve logaritmanın çarpımına eşittir:

Logaritmanın tabanı derece ise o zaman başka bir formül uygulanır:

Özellik 4. Kökün logaritması

Bu özellik, kuvvetin n'inci kökü 1/n'nin kuvvetine eşit olduğundan, bir kuvvetin logaritması özelliğinden elde edilebilir:

Bir tabandaki logaritmayı başka bir tabandaki logaritmaya dönüştürme formülü

Bu formül aynı zamanda logaritmalarla ilgili çeşitli görevleri çözerken sıklıkla kullanılır:

Özel durum:

Logaritmaları karşılaştırma (eşitsizlikler)

Logaritma altında aynı tabanlara sahip iki f(x) ve g(x) fonksiyonumuz olsun ve aralarında bir eşitsizlik işareti olsun:

Bunları karşılaştırmak için önce logaritmanın tabanına bakmanız gerekir:

  • a > 0 ise f(x) > g(x) > 0
  • 0 ise< a < 1, то 0 < f(x) < g(x)

Logaritmalarla ilgili problemler nasıl çözülür: örnekler

Logaritmalarla ilgili sorunlar Görev 5 ve Görev 7'de 11. sınıf için Matematikte Birleşik Devlet Sınavına dahil edilen görevleri web sitemizde uygun bölümlerde bulabilirsiniz. Ayrıca matematik görev bankasında logaritmalı görevler bulunur. Tüm örnekleri sitede arama yaparak bulabilirsiniz.

Logaritma nedir

Logaritmalar okul matematik derslerinde her zaman zor bir konu olarak görülmüştür. Logaritmanın birçok farklı tanımı vardır, ancak bazı nedenlerden dolayı ders kitaplarının çoğu bunlardan en karmaşık ve başarısız olanı kullanır.

Logaritmayı basit ve net bir şekilde tanımlayacağız. Bunu yapmak için bir tablo oluşturalım:

Yani ikinin kuvvetlerine sahibiz.

Logaritmalar - özellikler, formüller, nasıl çözüleceği

Alt satırdaki sayıyı alırsanız, bu sayıyı elde etmek için ikiyi yükseltmeniz gereken gücü kolayca bulabilirsiniz. Örneğin, 16 elde etmek için ikinin dördüncü kuvvetini yükseltmeniz gerekir. Ve 64'ü elde etmek için ikinin altıncı kuvvetini artırmanız gerekiyor. Bu tablodan görülebilmektedir.

Ve şimdi - aslında logaritmanın tanımı:

x argümanının a tabanı, x sayısını elde etmek için a sayısının yükseltilmesi gereken kuvvettir.

Tanım: log a x = b, burada a tabandır, x argümandır, b ise logaritmanın gerçekte eşit olduğu şeydir.

Örneğin, 2 3 = 8 ⇒ log 2 8 = 3 (2 3 = 8 olduğundan 8'in 2 tabanlı logaritması üçtür). Aynı başarı ile log 2 64 = 6, çünkü 2 6 = 64.

Bir sayının belirli bir tabana göre logaritmasını bulma işlemine denir. Şimdi tablomuza yeni bir satır ekleyelim:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
günlük 2 2 = 1 günlük 2 4 = 2 günlük 2 8 = 3 günlük 2 16 = 4 günlük 2 32 = 5 günlük 2 64 = 6

Ne yazık ki tüm logaritmalar bu kadar kolay hesaplanamıyor. Örneğin, log 2 5'i bulmaya çalışın. Tabloda 5 sayısı yok ama mantık, logaritmanın aralıkta bir yerde olacağını söylüyor. Çünkü 2 2< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Bu tür sayılara irrasyonel denir: Ondalık noktadan sonraki sayılar sonsuza kadar yazılabilir ve asla tekrarlanmaz. Logaritmanın irrasyonel olduğu ortaya çıkarsa, onu bu şekilde bırakmak daha iyidir: log 2 5, log 3 8, log 5 100.

Logaritmanın iki değişkenli (taban ve argüman) bir ifade olduğunu anlamak önemlidir. İlk başta birçok kişi temelin nerede olduğunu ve argümanın nerede olduğunu karıştırıyor. Can sıkıcı yanlış anlamaları önlemek için resme bakın:

Önümüzde bir logaritmanın tanımından başka bir şey yok. Hatırlamak: logaritma bir kuvvettir Bir argüman elde etmek için tabanın içine inşa edilmesi gerekir. Bir güce yükseltilen tabandır - resimde kırmızıyla vurgulanmıştır. Tabanın her zaman altta olduğu ortaya çıktı! Öğrencilerime bu harika kuralı daha ilk derste anlatıyorum ve hiçbir kafa karışıklığı ortaya çıkmıyor.

Logaritmalar nasıl sayılır

Tanımı çözdük; geriye kalan tek şey logaritmanın nasıl sayılacağını öğrenmek. "log" işaretinden kurtulun. Başlangıç ​​olarak, tanımdan iki önemli gerçeğin çıktığını not ediyoruz:

  1. Argüman ve taban her zaman sıfırdan büyük olmalıdır. Bu, bir derecenin rasyonel bir üsle tanımlanmasından kaynaklanır ve logaritmanın tanımı buna indirgenir.
  2. Taban birden farklı olmalıdır, çünkü bir dereceye kadar bir hala bir olarak kalır. Bu nedenle “iki elde etmek için kişinin hangi güce yükseltilmesi gerekir” sorusu anlamsızdır. Böyle bir derece yok!

Bu tür kısıtlamalara denir kabul edilebilir değerler aralığı(ODZ). Logaritmanın ODZ'sinin şu şekilde göründüğü ortaya çıktı: log a x = b ⇒x > 0, a > 0, a ≠ 1.

b sayısı (logaritmanın değeri) üzerinde herhangi bir kısıtlama olmadığını unutmayın. Örneğin logaritma negatif olabilir: log 2 0,5 = −1, çünkü 0,5 = 2−1.

Ancak şimdi yalnızca logaritmanın VA'sını bilmenin gerekli olmadığı sayısal ifadeleri ele alıyoruz. Tüm kısıtlamalar, görevlerin yazarları tarafından zaten dikkate alınmıştır. Ancak logaritmik denklemler ve eşitsizlikler devreye girdiğinde DL gereklilikleri zorunlu hale gelecektir. Sonuçta, temel ve argüman, yukarıdaki kısıtlamalara tam olarak uymayan çok güçlü yapılar içerebilir.

Şimdi logaritmaları hesaplamak için genel şemaya bakalım. Üç adımdan oluşur:

  1. A tabanını ve x argümanını, mümkün olan minimum tabanı birden büyük olacak şekilde bir kuvvet olarak ifade edin. Bu arada ondalık sayılardan kurtulmak daha iyidir;
  2. b değişkeninin denklemini çözün: x = a b ;
  3. Ortaya çıkan b sayısı cevap olacaktır.

Bu kadar! Logaritmanın irrasyonel olduğu ortaya çıkarsa, bu zaten ilk adımda görülecektir. Tabanın birden büyük olması gerekliliği çok önemlidir: bu, hata olasılığını azaltır ve hesaplamaları büyük ölçüde basitleştirir. Ondalık kesirlerde de durum aynıdır: Bunları hemen sıradan kesirlere dönüştürürseniz, çok daha az hata olacaktır.

Belirli örnekleri kullanarak bu şemanın nasıl çalıştığını görelim:

Görev. Logaritmayı hesaplayın: log 5 25

  1. Tabanı ve argümanı beşin kuvveti olarak düşünelim: 5 = 5 1; 25 = 52;
  2. Denklemi oluşturup çözelim:
    log 5 25 = b ⇒(5 1) b = 5 2 ⇒5 b = 5 2 ⇒ b = 2;

  3. Cevabını aldık: 2.

Görev. Logaritmayı hesaplayın:

Görev. Logaritmayı hesaplayın: log 4 64

  1. Tabanı ve argümanı ikinin kuvveti olarak düşünelim: 4 = 2 2; 64 = 26;
  2. Denklemi oluşturup çözelim:
    log 4 64 = b ⇒(2 2) b = 2 6 ⇒2 2b = 2 6 ⇒2b = 6 ⇒ b = 3;
  3. Cevabını aldık: 3.

Görev. Logaritmayı hesaplayın: log 16 1

  1. Tabanı ve argümanı ikinin kuvveti olarak düşünelim: 16 = 2 4; 1 = 2 0;
  2. Denklemi oluşturup çözelim:
    log 16 1 = b ⇒(2 4) b = 2 0 ⇒2 4b = 2 0 ⇒4b = 0 ⇒ b = 0;
  3. Cevabını aldık: 0.

Görev. Logaritmayı hesaplayın: log 7 14

  1. Tabanı ve argümanı yedinin kuvveti olarak düşünelim: 7 = 7 1; 7 1 olduğundan 14 yedinin kuvveti olarak temsil edilemez< 14 < 7 2 ;
  2. Önceki paragraftan logaritmanın sayılmadığı anlaşılmaktadır;
  3. Cevap değişiklik yok: log 7 14.

Son örnekle ilgili küçük bir not. Bir sayının başka bir sayının tam kuvveti olmadığından nasıl emin olabilirsiniz? Çok basit; bunu asal çarpanlara ayırmanız yeterli. Genişlemenin en az iki farklı faktörü varsa, sayı tam bir kuvvet değildir.

Görev. Sayıların tam kuvvetleri olup olmadığını öğrenin: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - tam derece, çünkü yalnızca bir çarpan vardır;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - tam bir kuvvet değildir, çünkü iki çarpan vardır: 3 ve 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - tam derece;
35 = 7 · 5 - yine kesin bir kuvvet değil;
14 = 7 · 2 - yine kesin bir derece değil;

Ayrıca asal sayıların her zaman kendilerinin tam kuvvetleri olduğuna dikkat edin.

Ondalık logaritma

Bazı logaritmalar o kadar yaygındır ki özel bir isme ve sembole sahiptirler.

x argümanının 10 tabanına göre logaritması, yani X sayısını elde etmek için 10 sayısının yükseltilmesi gereken kuvvet. Tanım: lg x.

Örneğin log 10 = 1; lg100 = 2; lg 1000 = 3 - vb.

Artık bir ders kitabında “Lg 0.01'i bul” gibi bir ifade çıktığında bunun bir yazım hatası olmadığını bilin. Bu bir ondalık logaritmadır. Ancak bu gösterime aşina değilseniz, istediğiniz zaman yeniden yazabilirsiniz:
günlük x = günlük 10 x

Sıradan logaritmalar için doğru olan her şey ondalık logaritmalar için de doğrudur.

Doğal logaritma

Kendi tanımı olan başka bir logaritma var. Bazı yönlerden ondalık sayıdan bile daha önemlidir. Doğal logaritmadan bahsediyoruz.

x argümanının e tabanına göre logaritması, yani. x sayısını elde etmek için e sayısının yükseltilmesi gereken güç. Tanım: ln x.

Birçok kişi şunu soracaktır: e sayısı nedir? Bu irrasyonel bir sayıdır, kesin değeri bulunup yazılamaz. Sadece ilk rakamları vereceğim:
e = 2,718281828459…

Bu sayının ne olduğu ve neden ihtiyaç duyulduğu konusunda detaya girmeyeceğiz. Sadece e'nin doğal logaritmanın tabanı olduğunu unutmayın:
ln x = log e x

Böylece ln e = 1; ln e 2 = 2; ln e 16 = 16 - vb. Öte yandan ln 2 irrasyonel bir sayıdır. Genel olarak herhangi bir rasyonel sayının doğal logaritması irrasyoneldir. Elbette biri hariç: ln 1 = 0.

Doğal logaritmalar için sıradan logaritmalar için geçerli olan tüm kurallar geçerlidir.

Ayrıca bakınız:

Logaritma. Logaritmanın özellikleri (logaritmanın gücü).

Bir sayı logaritma olarak nasıl temsil edilir?

Logaritmanın tanımını kullanıyoruz.

Logaritma, logaritma işaretinin altındaki sayıyı elde etmek için tabanın yükseltilmesi gereken bir üsdür.

Bu nedenle, belirli bir c sayısını a tabanına göre logaritma olarak temsil etmek için, logaritmanın işaretinin altına logaritmanın tabanıyla aynı tabana sahip bir kuvvet koymanız ve bu c sayısını üs olarak yazmanız gerekir:

Kesinlikle herhangi bir sayı logaritma olarak temsil edilebilir - pozitif, negatif, tam sayı, kesirli, rasyonel, irrasyonel:

Bir test veya sınavın stresli koşullarında a ve c'yi karıştırmamak için aşağıdaki ezberleme kuralını kullanabilirsiniz:

aşağıda olan aşağı iner, yukarıda olan ise yukarı çıkar.

Örneğin, 2 sayısını 3 tabanına göre logaritma olarak temsil etmeniz gerekir.

Elimizde iki sayımız var - 2 ve 3. Bu sayılar logaritmanın işaretinin altına yazacağımız taban ve üslerdir. Geriye bu sayılardan hangisinin derece tabanına, hangisinin üsse kadar yazılması gerektiğini belirlemek kalıyor.

Bir logaritmanın gösteriminde 3 tabanı en alttadır, yani ikiyi 3 tabanına göre logaritma olarak temsil ettiğimizde tabana da 3 yazacağız.

2, üçten büyüktür. Ve ikinci derecenin gösteriminde üçün üstüne, yani üslü olarak yazıyoruz:

Logaritmalar. İlk seviye.

Logaritmalar

Logaritma pozitif sayı B dayalı A, Nerede a > 0, a ≠ 1, sayının yükseltilmesi gereken üs olarak adlandırılır A, Elde etmek üzere B.

logaritmanın tanımı kısaca şu şekilde yazılabilir:

Bu eşitlik aşağıdakiler için geçerlidir: b > 0, a > 0, a ≠ 1. Genellikle denir logaritmik özdeşlik.
Bir sayının logaritmasını bulma işlemine denir logaritma ile.

Logaritmanın özellikleri:

Ürünün logaritması:

Bölümün logaritması:

Logaritma tabanını değiştirmek:

Derecenin logaritması:

Kökün logaritması:

Güç tabanlı logaritma:





Ondalık ve doğal logaritmalar.

Ondalık logaritma sayılar bu sayının logaritmasını 10 tabanına çağırır ve   lg yazar B
Doğal logaritma sayılara o sayının tabana göre logaritması denir e, Nerede e- yaklaşık olarak 2,7'ye eşit irrasyonel bir sayı. Aynı zamanda ln yazıyorlar B.

Cebir ve geometri üzerine diğer notlar

Logaritmanın temel özellikleri

Logaritmanın temel özellikleri

Logaritmalar da diğer sayılar gibi her şekilde toplanabilir, çıkarılabilir ve dönüştürülebilir. Ancak logaritmalar tam olarak sıradan sayılar olmadığından burada kurallar vardır. ana özellikler.

Bu kuralları kesinlikle bilmeniz gerekir - onlar olmadan tek bir ciddi logaritmik problem çözülemez. Ayrıca bunlardan çok azı var - her şeyi bir günde öğrenebilirsiniz. Öyleyse başlayalım.

Logaritmaların toplanması ve çıkarılması

Aynı tabanlara sahip iki logaritmayı düşünün: log a x ve log a y. Daha sonra bunlar eklenebilir ve çıkarılabilir ve:

  1. log a x + log a y = log a (x y);
  2. log a x − log a y = log a (x: y).

Yani logaritmaların toplamı çarpımın logaritmasına, fark ise bölümün logaritmasına eşittir. Lütfen dikkat: buradaki kilit nokta aynı gerekçeler. Sebepler farklıysa bu kurallar işe yaramaz!

Bu formüller, tek tek parçaları dikkate alınmasa bile logaritmik bir ifadeyi hesaplamanıza yardımcı olacaktır (“Logaritma nedir” dersine bakın). Örneklere bir göz atın ve şunu görün:

Günlük 6 4 + günlük 6 9.

Logaritmaların tabanları aynı olduğundan toplam formülünü kullanırız:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Görev. İfadenin değerini bulun: log 2 48 – log 2 3.

Bazlar aynı, fark formülünü kullanıyoruz:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Görev. İfadenin değerini bulun: log 3 135 – log 3 5.

Tabanlar yine aynı olduğundan elimizde:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Gördüğünüz gibi orijinal ifadeler ayrı olarak hesaplanmayan “kötü” logaritmalardan oluşuyor. Ancak dönüşümlerden sonra tamamen normal sayılar elde edilir. Birçok test bu gerçeğe dayanmaktadır. Evet, Birleşik Devlet Sınavında test benzeri ifadeler tüm ciddiyetiyle (bazen neredeyse hiç değişiklik yapılmadan) sunulmaktadır.

Üslü logaritmadan çıkarma

Şimdi görevi biraz karmaşıklaştıralım. Ya bir logaritmanın tabanı veya argümanı bir kuvvet ise? Daha sonra bu derecenin üssü aşağıdaki kurallara göre logaritmanın işaretinden çıkarılabilir:

Son kuralın ilk ikisini takip ettiğini görmek kolaydır. Ancak yine de hatırlamak daha iyidir - bazı durumlarda hesaplama miktarını önemli ölçüde azaltacaktır.

Elbette, logaritmanın ODZ'sine uyulursa tüm bu kurallar anlamlıdır: a > 0, a ≠ 1, x > 0. Ve bir şey daha: tüm formülleri yalnızca soldan sağa değil, aynı zamanda tam tersi şekilde uygulamayı öğrenin. yani Logaritma işaretinden önceki sayıları logaritmanın kendisine girebilirsiniz.

Logaritmalar nasıl çözülür?

En sık ihtiyaç duyulan şey budur.

Görev. İfadenin değerini bulun: log 7 49 6 .

İlk formülü kullanarak argümandaki dereceden kurtulalım:
günlük 7 49 6 = 6 günlük 7 49 = 6 2 = 12

Görev. İfadenin anlamını bulun:

Paydanın, tabanı ve argümanının tam kuvvetleri olan bir logaritma içerdiğine dikkat edin: 16 = 2 4; 49 = 7 2. Sahibiz:

Son örneğin biraz açıklama gerektirdiğini düşünüyorum. Logaritmalar nereye gitti? Son ana kadar sadece paydayla çalışıyoruz. Orada duran logaritmanın temelini ve argümanını kuvvetler şeklinde sunduk ve üsleri çıkardık - “üç katlı” bir kesir elde ettik.

Şimdi ana kesirlere bakalım. Pay ve payda aynı sayıyı içerir: log 2 7. Log 2 7 ≠ 0 olduğundan kesri azaltabiliriz - 2/4 paydada kalacaktır. Aritmetik kurallarına göre dörtlü paya aktarılabilir ki yapılan da budur. Sonuç şuydu: 2.

Yeni bir temele geçiş

Logaritma toplama ve çıkarma kurallarından bahsederken bunların sadece aynı tabanlarla çalıştığını özellikle vurguladım. Peki ya sebepler farklıysa? Ya aynı sayının tam kuvvetleri değilse?

Yeni bir vakfa geçiş formülleri kurtarmaya geliyor. Bunları bir teorem şeklinde formüle edelim:

Logaritma log a x verilsin. O halde c > 0 ve c ≠ 1 olacak şekilde herhangi bir c sayısı için eşitlik doğrudur:

Özellikle c = x değerini ayarlarsak şunu elde ederiz:

İkinci formülden, logaritmanın tabanı ve argümanının değiştirilebileceği anlaşılmaktadır, ancak bu durumda ifadenin tamamı "tersine çevrilmiştir", yani. logaritma paydada görünür.

Bu formüllere sıradan sayısal ifadelerde nadiren rastlanır. Ne kadar kullanışlı olduklarını ancak logaritmik denklem ve eşitsizlikleri çözerken değerlendirmek mümkündür.

Ancak yeni bir temele taşınmak dışında hiçbir şekilde çözülemeyen sorunlar var. Bunlardan birkaçına bakalım:

Görev. İfadenin değerini bulun: log 5 16 log 2 25.

Her iki logaritmanın argümanlarının tam güçler içerdiğini unutmayın. Göstergeleri çıkaralım: log 5 16 = log 5 2 4 = 4log 5 2; günlük 2 25 = günlük 2 5 2 = 2 günlük 2 5;

Şimdi ikinci logaritmayı “tersine çevirelim”:

Faktörleri yeniden düzenlerken çarpım değişmediğinden, sakince dört ve ikiyi çarptık ve ardından logaritmalarla uğraştık.

Görev. İfadenin değerini bulun: log 9 100 lg 3.

Birinci logaritmanın tabanı ve argümanı tam kuvvetlerdir. Bunu bir kenara yazalım ve göstergelerden kurtulalım:

Şimdi yeni bir tabana geçerek ondalık logaritmadan kurtulalım:

Temel logaritmik kimlik

Çoğu zaman çözüm sürecinde bir sayının belirli bir tabana göre logaritması olarak gösterilmesi gerekir.

Bu durumda aşağıdaki formüller bize yardımcı olacaktır:

İlk durumda, n sayısı argümandaki üs haline gelir. N sayısı kesinlikle herhangi bir şey olabilir çünkü bu yalnızca bir logaritma değeridir.

İkinci formül aslında başka kelimelerle ifade edilmiş bir tanımdır. Buna şöyle denir: .

Aslında b sayısı, b sayısının bu kuvveti a sayısını verecek şekilde yükseltilirse ne olur? Doğru: sonuç aynı a sayısıdır. Bu paragrafı dikkatlice tekrar okuyun; birçok kişi buna takılıp kalıyor.

Yeni bir tabana geçiş formülleri gibi, temel logaritmik özdeşlik de bazen mümkün olan tek çözümdür.

Görev. İfadenin anlamını bulun:

Log 25 64 = log 5 8'in basitçe tabandan ve logaritmanın argümanından kareyi aldığını unutmayın. Aynı tabanla kuvvetleri çarpma kurallarını hesaba katarsak şunu elde ederiz:

Bilmeyen varsa, bu Birleşik Devlet Sınavından gerçek bir görevdi :)

Logaritmik birim ve logaritmik sıfır

Sonuç olarak, özellik olarak adlandırılması pek mümkün olmayan iki kimlik vereceğim - bunlar daha ziyade logaritmanın tanımının sonuçlarıdır. Sürekli olarak sorunlarla karşılaşıyorlar ve şaşırtıcı bir şekilde "ileri düzey" öğrenciler için bile sorunlar yaratıyorlar.

  1. log a a = 1'dir. Bir kere şunu unutmayın: o tabanın herhangi bir a tabanının logaritması bire eşittir.
  2. log a 1 = 0'dır. A tabanı herhangi bir şey olabilir, ancak argüman bir içeriyorsa logaritma sıfıra eşittir! Çünkü 0 = 1, tanımın doğrudan bir sonucudur.

Tüm özellikler bu kadar. Bunları uygulamaya koymayı unutmayın! Dersin başındaki kopya kağıdını indirin, yazdırın ve problemleri çözün.

Logaritmalar da diğer sayılar gibi her şekilde toplanabilir, çıkarılabilir ve dönüştürülebilir. Ancak logaritmalar tam olarak sıradan sayılar olmadığından burada kurallar vardır. ana özellikler.

Bu kuralları kesinlikle bilmeniz gerekir - onlar olmadan tek bir ciddi logaritmik problem çözülemez. Ayrıca bunlardan çok azı var - her şeyi bir günde öğrenebilirsiniz. Öyleyse başlayalım.

Logaritmaların toplanması ve çıkarılması

Aynı tabanlara sahip iki logaritmayı düşünün: log A X ve kayıt A sen. Daha sonra bunlar eklenebilir ve çıkarılabilir ve:

  1. kayıt A X+ günlük A sen=günlük A (X · sen);
  2. kayıt A X- günlük A sen=günlük A (X : sen).

Yani logaritmaların toplamı çarpımın logaritmasına, fark ise bölümün logaritmasına eşittir. Lütfen dikkat: buradaki kilit nokta aynı gerekçeler. Sebepler farklıysa bu kurallar işe yaramaz!

Bu formüller, tek tek parçaları dikkate alınmasa bile logaritmik bir ifadeyi hesaplamanıza yardımcı olacaktır (“Logaritma nedir” dersine bakın). Örneklere bir göz atın ve şunu görün:

Günlük 6 4 + günlük 6 9.

Logaritmaların tabanları aynı olduğundan toplam formülünü kullanırız:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Görev. İfadenin değerini bulun: log 2 48 – log 2 3.

Bazlar aynı, fark formülünü kullanıyoruz:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Görev. İfadenin değerini bulun: log 3 135 – log 3 5.

Tabanlar yine aynı olduğundan elimizde:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Gördüğünüz gibi orijinal ifadeler ayrı olarak hesaplanmayan “kötü” logaritmalardan oluşuyor. Ancak dönüşümlerden sonra tamamen normal sayılar elde edilir. Birçok test bu gerçeğe dayanmaktadır. Evet, Birleşik Devlet Sınavında test benzeri ifadeler tüm ciddiyetiyle (bazen neredeyse hiç değişiklik yapılmadan) sunulmaktadır.

Üslü logaritmadan çıkarma

Şimdi görevi biraz karmaşıklaştıralım. Ya bir logaritmanın tabanı veya argümanı bir kuvvet ise? Daha sonra bu derecenin üssü aşağıdaki kurallara göre logaritmanın işaretinden çıkarılabilir:

Son kuralın ilk ikisini takip ettiğini görmek kolaydır. Ancak yine de hatırlamak daha iyidir - bazı durumlarda hesaplama miktarını önemli ölçüde azaltacaktır.

Elbette, logaritmanın ODZ'sine uyulduğu takdirde tüm bu kurallar anlamlıdır: A > 0, A ≠ 1, X> 0. Ve bir şey daha: tüm formülleri yalnızca soldan sağa değil, aynı zamanda tam tersi şekilde de uygulamayı öğrenin; Logaritma işaretinden önceki sayıları logaritmanın kendisine girebilirsiniz. En sık ihtiyaç duyulan şey budur.

Görev. İfadenin değerini bulun: log 7 49 6 .

İlk formülü kullanarak argümandaki dereceden kurtulalım:
günlük 7 49 6 = 6 günlük 7 49 = 6 2 = 12

Görev. İfadenin anlamını bulun:

[Resmin başlığı]

Paydanın, tabanı ve argümanının tam kuvvetleri olan bir logaritma içerdiğine dikkat edin: 16 = 2 4; 49 = 7 2. Sahibiz:

[Resmin başlığı]

Son örneğin biraz açıklama gerektirdiğini düşünüyorum. Logaritmalar nereye gitti? Son ana kadar sadece paydayla çalışıyoruz. Orada duran logaritmanın temelini ve argümanını kuvvetler şeklinde sunduk ve üsleri çıkardık - “üç katlı” bir kesir elde ettik.

Şimdi ana kesirlere bakalım. Pay ve payda aynı sayıyı içerir: log 2 7. Log 2 7 ≠ 0 olduğundan kesri azaltabiliriz - 2/4 paydada kalacaktır. Aritmetik kurallarına göre dörtlü paya aktarılabilir ki yapılan da budur. Sonuç şuydu: 2.

Yeni bir temele geçiş

Logaritma toplama ve çıkarma kurallarından bahsederken bunların sadece aynı tabanlarla çalıştığını özellikle vurguladım. Peki ya sebepler farklıysa? Ya aynı sayının tam kuvvetleri değilse?

Yeni bir vakfa geçiş formülleri kurtarmaya geliyor. Bunları bir teorem şeklinde formüle edelim:

Logaritma günlüğü verilsin A X. Daha sonra herhangi bir sayı için Cöyle ki C> 0 ve C≠ 1, eşitlik doğrudur:

[Resmin başlığı]

Özellikle şunu koyarsak C = X, şunu elde ederiz:

[Resmin başlığı]

İkinci formülden, logaritmanın tabanı ve argümanının değiştirilebileceği anlaşılmaktadır, ancak bu durumda ifadenin tamamı "tersine çevrilmiştir", yani. logaritma paydada görünür.

Bu formüllere sıradan sayısal ifadelerde nadiren rastlanır. Ne kadar kullanışlı olduklarını ancak logaritmik denklem ve eşitsizlikleri çözerken değerlendirmek mümkündür.

Ancak yeni bir temele taşınmak dışında hiçbir şekilde çözülemeyen sorunlar var. Bunlardan birkaçına bakalım:

Görev. İfadenin değerini bulun: log 5 16 log 2 25.

Her iki logaritmanın argümanlarının tam güçler içerdiğini unutmayın. Göstergeleri çıkaralım: log 5 16 = log 5 2 4 = 4log 5 2; günlük 2 25 = günlük 2 5 2 = 2 günlük 2 5;

Şimdi ikinci logaritmayı “tersine çevirelim”:

[Resmin başlığı]

Faktörleri yeniden düzenlerken çarpım değişmediğinden, sakince dört ve ikiyi çarptık ve ardından logaritmalarla uğraştık.

Görev. İfadenin değerini bulun: log 9 100 lg 3.

Birinci logaritmanın tabanı ve argümanı tam kuvvetlerdir. Bunu bir kenara yazalım ve göstergelerden kurtulalım:

[Resmin başlığı]

Şimdi yeni bir tabana geçerek ondalık logaritmadan kurtulalım:

[Resmin başlığı]

Temel logaritmik kimlik

Çoğu zaman çözüm sürecinde bir sayının belirli bir tabana göre logaritması olarak gösterilmesi gerekir. Bu durumda aşağıdaki formüller bize yardımcı olacaktır:

İlk durumda, sayı N argümandaki duruş derecesinin bir göstergesi haline gelir. Sayı N kesinlikle herhangi bir şey olabilir, çünkü bu yalnızca bir logaritma değeridir.

İkinci formül aslında başka kelimelerle ifade edilmiş bir tanımdır. Buna denir: temel logaritmik özdeşlik.

Aslında sayı gelse ne olur? Böyle bir güce yükseltin ki sayı B bu güce sayıyı verir A? Bu doğru: aynı numarayı alıyorsunuz A. Bu paragrafı dikkatlice tekrar okuyun; birçok kişi buna takılıp kalıyor.

Yeni bir tabana geçiş formülleri gibi, temel logaritmik özdeşlik de bazen mümkün olan tek çözümdür.

Görev. İfadenin anlamını bulun:

[Resmin başlığı]

Log 25 64 = log 5 8'in basitçe tabandan ve logaritmanın argümanından kareyi aldığını unutmayın. Aynı tabanla kuvvetleri çarpma kurallarını hesaba katarsak şunu elde ederiz:

[Resmin başlığı]

Bilmeyen varsa, bu Birleşik Devlet Sınavından gerçek bir görevdi :)

Logaritmik birim ve logaritmik sıfır

Sonuç olarak, özellik olarak adlandırılması pek mümkün olmayan iki kimlik vereceğim - bunlar daha ziyade logaritmanın tanımının sonuçlarıdır. Sürekli olarak sorunlarla karşılaşıyorlar ve şaşırtıcı bir şekilde "ileri düzey" öğrenciler için bile sorunlar yaratıyorlar.

  1. kayıt A A= 1 logaritmik bir birimdir. Bir kez ve tamamen hatırlayın: herhangi bir tabana göre logaritma A bu tabandan itibaren bire eşittir.
  2. kayıt A 1 = 0 logaritmik sıfırdır. Temel A Herhangi bir şey olabilir, ancak argüman bir tane içeriyorsa logaritma sıfıra eşittir! Çünkü A 0 = 1 tanımın doğrudan bir sonucudur.

Tüm özellikler bu kadar. Bunları uygulamaya koymayı unutmayın! Dersin başındaki kopya kağıdını indirin, yazdırın ve problemleri çözün.

Logaritmik ifadeler, çözüm örnekleri. Bu yazıda logaritma çözümüyle ilgili problemlere bakacağız. Görevler bir ifadenin anlamını bulma sorusunu sorar. Logaritma kavramının birçok görevde kullanıldığını ve anlamını anlamanın son derece önemli olduğunu belirtmek gerekir. Birleşik Devlet Sınavına gelince, logaritma denklemleri çözerken, uygulamalı problemlerde ve ayrıca fonksiyonların incelenmesiyle ilgili görevlerde kullanılır.

Logaritmanın anlamını anlamak için örnekler verelim:


Temel logaritmik kimlik:

Logaritmanın her zaman hatırlanması gereken özellikleri:

*Çarpımın logaritması, faktörlerin logaritmasının toplamına eşittir.

* * *

*Bir bölümün (kesir) logaritması, faktörlerin logaritmaları arasındaki farka eşittir.

* * *

*Üssün logaritması üssün logaritması ile üssün çarpımına eşittir.

* * *

*Yeni bir temele geçiş

* * *

Daha fazla özellik:

* * *

Logaritmanın hesaplanması üslü sayıların özelliklerinin kullanımıyla yakından ilgilidir.

Bunlardan bazılarını listeleyelim:

Bu özelliğin özü, pay paydaya aktarıldığında ve tam tersi durumda üssün işaretinin tersine değişmesidir. Örneğin:

Bu özellikten bir sonuç:

* * *

Bir kuvveti bir kuvvete yükseltirken taban aynı kalır ancak üsler çarpılır.

* * *

Gördüğünüz gibi logaritma kavramının kendisi basittir. Önemli olan, size belirli bir beceri kazandıran iyi uygulamaya ihtiyacınız olmasıdır. Elbette formül bilgisi gereklidir. Temel logaritmaları dönüştürme becerisi geliştirilmediyse, basit görevleri çözerken kolayca hata yapabilirsiniz.

Pratik yapın, önce matematik dersindeki en basit örnekleri çözün, ardından daha karmaşık olanlara geçin. Gelecekte logaritmaların ne kadar “çirkin” çözüldüğünü mutlaka göstereceğim; bunlar Birleşik Devlet Sınavında çıkmayacak ama ilgi çekici, kaçırmayın!

Bu kadar! Sana iyi şanslar!

Saygılarımla, Alexander Krutitskikh

Not: Siteyi sosyal ağlarda anlatırsanız sevinirim.

Bildiğiniz gibi ifadeleri kuvvetlerle çarparken üsleri daima toplanır (a b *a c = a b+c). Bu matematik kanunu Arşimet tarafından türetildi ve daha sonra 8. yüzyılda matematikçi Virasen tamsayı üslerinden oluşan bir tablo oluşturdu. Logaritmanın daha fazla keşfedilmesine hizmet edenler onlardı. Bu işlevin kullanımına ilişkin örnekler, zahmetli çarpma işlemlerini basit toplama yoluyla basitleştirmeniz gereken hemen hemen her yerde bulunabilir. Bu makaleyi okumaya 10 dakikanızı ayırırsanız size logaritmanın ne olduğunu ve onlarla nasıl çalışılacağını açıklayacağız. Basit ve erişilebilir bir dille.

Matematikte tanım

Logaritma aşağıdaki formun bir ifadesidir: log a b=c, yani negatif olmayan herhangi bir sayının (yani herhangi bir pozitif) “b”nin “a” tabanına göre logaritması, “c” kuvveti olarak kabul edilir. ” sonuçta "b" değerini elde etmek için "a" tabanının yükseltilmesi gerekir. Logaritmayı örneklerle inceleyelim, diyelim ki log 2 8 ifadesi var. Cevap nasıl bulunur? Çok basit, öyle bir güç bulmanız gerekiyor ki 2'den gerekli güce 8 ulaşacaksınız. Kafanızda bazı hesaplamalar yaptıktan sonra 3 sayısını elde ediyoruz! Ve bu doğru çünkü 2 üssü 3 cevabı 8 olarak veriyor.

Logaritma türleri

Pek çok öğrenci ve öğrenci için bu konu karmaşık ve anlaşılmaz görünüyor, ancak aslında logaritmalar o kadar da korkutucu değil, asıl önemli olan genel anlamlarını anlamak ve özelliklerini ve bazı kurallarını hatırlamaktır. Üç ayrı logaritmik ifade türü vardır:

  1. Doğal logaritma ln a, burada taban Euler sayısıdır (e = 2,7).
  2. Tabanı 10 olan ondalık a.
  3. Herhangi bir b sayısının a>1 tabanına göre logaritması.

Bunların her biri, logaritmik teoremler kullanılarak basitleştirme, indirgeme ve ardından tek bir logaritmaya indirgeme dahil olmak üzere standart bir şekilde çözülür. Logaritmaların doğru değerlerini elde etmek için, bunları çözerken özelliklerini ve eylem sırasını hatırlamanız gerekir.

Kurallar ve bazı kısıtlamalar

Matematikte aksiyom olarak kabul edilen, yani tartışmaya konu olmayan ve gerçek olan birçok kural-kısıtlama vardır. Örneğin sayıları sıfıra bölmek mümkün olmadığı gibi negatif sayıların çift kökünü çıkarmak da imkansızdır. Logaritmaların da kendi kuralları vardır; bunları takip ederek uzun ve kapsamlı logaritmik ifadelerle bile çalışmayı kolayca öğrenebilirsiniz:

  • "a" tabanı her zaman sıfırdan büyük olmalı ve 1'e eşit olmamalıdır, aksi takdirde ifade anlamını kaybeder, çünkü "1" ve "0" herhangi bir dereceye kadar her zaman değerlerine eşittir;
  • a > 0 ise a b >0 ise "c"nin de sıfırdan büyük olması gerektiği ortaya çıkar.

Logaritmalar nasıl çözülür?

Örneğin 10 x = 100 denkleminin cevabını bulma görevi veriliyor. Bu çok kolay, on sayısını artırarak 100'e ulaşacağımız bir kuvvet seçmeniz gerekiyor. Bu elbette 10 2 = 100.

Şimdi bu ifadeyi logaritmik formda gösterelim. Log 10 100 = 2 elde ederiz. Logaritmaları çözerken, belirli bir sayıyı elde etmek için logaritmanın tabanına girmenin gerekli olduğu gücü bulmak için tüm eylemler pratik olarak birleşir.

Bilinmeyen bir derecenin değerini doğru bir şekilde belirlemek için derece tablosuyla nasıl çalışılacağını öğrenmeniz gerekir. Şuna benziyor:

Gördüğünüz gibi, eğer teknik bir aklınız ve çarpım tablosu bilginiz varsa, bazı üsler sezgisel olarak tahmin edilebilir. Ancak daha büyük değerler için güç tablosuna ihtiyacınız olacaktır. Karmaşık matematik konuları hakkında hiçbir şey bilmeyen kişiler tarafından bile kullanılabilir. Sol sütun sayıları içerir (a tabanı), sayıların üst satırı a sayısının yükseltildiği c kuvvetinin değeridir. Kesişme noktasında hücreler cevap olan sayı değerlerini içerir (a c =b). Mesela 10 rakamının olduğu ilk hücreyi alıp karesini alalım, iki hücremizin kesişiminde gösterilen 100 değerini elde ederiz. Her şey o kadar basit ve kolaydır ki en gerçek hümanist bile anlayacaktır!

Denklemler ve eşitsizlikler

Belirli koşullar altında üssün logaritma olduğu ortaya çıktı. Bu nedenle herhangi bir matematiksel sayısal ifade logaritmik eşitlik olarak yazılabilir. Örneğin 3 4 =81, 81'in 3 tabanlı logaritması dörde eşit (log 3 81 = 4) olarak yazılabilir. Negatif kuvvetler için kurallar aynıdır: 2 -5 = 1/32 logaritma olarak yazarsak log 2 (1/32) = -5 elde ederiz. Matematiğin en büyüleyici bölümlerinden biri “logaritmalar” konusudur. Özelliklerini inceledikten hemen sonra aşağıdaki denklem örneklerine ve çözümlerine bakacağız. Şimdi eşitsizliklerin neye benzediğine ve onları denklemlerden nasıl ayıracağımıza bakalım.

Aşağıdaki ifade verilmiştir: log 2 (x-1) > 3 - bu logaritmik bir eşitsizliktir, çünkü bilinmeyen “x” değeri logaritmik işaretin altındadır. Ayrıca ifadede iki nicelik karşılaştırılır: İstenilen sayının iki tabanına göre logaritması üç sayısından büyüktür.

Logaritmik denklemler ve eşitsizlikler arasındaki en önemli fark, logaritmalı denklemlerin (örneğin, logaritma 2 x = √9) cevapta bir veya daha fazla spesifik sayısal değeri ima etmesi, bir eşitsizliği çözerken ise her iki kabul edilebilir değer aralığının da belirtilmesidir. Bu fonksiyon kırılarak değerler ve noktalar belirlenir. Sonuç olarak cevap, bir denklemin cevabında olduğu gibi basit bir bireysel sayılar dizisi değil, sürekli bir dizi veya sayı dizisidir.

Logaritmalarla ilgili temel teoremler

Logaritmanın değerlerini bulma gibi ilkel görevleri çözerken özellikleri bilinmeyebilir. Ancak konu logaritmik denklemler veya eşitsizlikler olduğunda öncelikle logaritmanın tüm temel özelliklerini net bir şekilde anlamak ve pratikte uygulamak gerekir. Daha sonra denklem örneklerine bakacağız; önce her özelliğe daha ayrıntılı olarak bakalım.

  1. Ana kimlik şuna benzer: a logaB =B. Bu yalnızca a'nın 0'dan büyük olması, bire eşit olmaması ve B'nin sıfırdan büyük olması durumunda geçerlidir.
  2. Çarpımın logaritması şu formülle temsil edilebilir: log d (s 1 * s 2) = log d s 1 + log d s 2. Bu durumda zorunlu koşul şudur: d, s 1 ve s 2 > 0; a≠1. Bu logaritmik formülün ispatını örneklerle ve çözümle yapabilirsiniz. Log a s 1 = f 1 ve log a s 2 = f 2 olsun, sonra a f1 = s 1, a f2 = s 2 olsun. s 1 * s 2 = a f1 *a f2 = a f1+f2 sonucunu elde ederiz (özellikleri derece ) ve ardından tanım gereği: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, bunun kanıtlanması gerekiyordu.
  3. Bölümün logaritması şuna benzer: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Formül biçimindeki teorem şu biçimi alır: log a q b n = n/q log a b.

Bu formüle “logaritma derecesinin özelliği” denir. Sıradan derecelerin özelliklerine benzer ve bu şaşırtıcı değildir çünkü tüm matematik doğal önermelere dayanmaktadır. Kanıta bakalım.

Log a b = t olsun, a t =b olur. Her iki parçayı da m kuvvetine çıkarırsak: a tn = b n ;

ancak a tn = (a q) nt/q = b n olduğundan, log a q b n = (n*t)/t olduğundan, log a q b n = n/q log a b olur. Teorem kanıtlandı.

Sorun ve eşitsizlik örnekleri

Logaritmalarla ilgili en yaygın problem türleri denklem ve eşitsizlik örnekleridir. Neredeyse tüm problem kitaplarında bulunurlar ve aynı zamanda matematik sınavlarının da zorunlu bir parçasıdırlar. Bir üniversiteye girmek veya matematikte giriş sınavlarını geçmek için bu tür görevleri nasıl doğru bir şekilde çözeceğinizi bilmeniz gerekir.

Ne yazık ki, logaritmanın bilinmeyen değerini çözmek ve belirlemek için tek bir plan veya şema yoktur, ancak her matematiksel eşitsizliğe veya logaritmik denkleme belirli kurallar uygulanabilir. Öncelikle ifadenin basitleştirilip sadeleştirilemeyeceğini veya genel bir forma indirgenip indirgenemeyeceğini öğrenmelisiniz. Uzun logaritmik ifadeleri, özelliklerini doğru kullanırsanız basitleştirebilirsiniz. Onları hızlıca tanıyalım.

Logaritmik denklemleri çözerken, ne tür bir logaritmaya sahip olduğumuzu belirlememiz gerekir: örnek bir ifade, doğal bir logaritma veya ondalık bir logaritma içerebilir.

İşte ln100, ln1026 örnekleri. Çözümleri, 10 tabanının sırasıyla 100 ve 1026'ya eşit olacağı gücü belirlemeleri gerektiği gerçeğine dayanıyor. Doğal logaritmaları çözmek için logaritmik kimlikleri veya bunların özelliklerini uygulamanız gerekir. Çeşitli türlerdeki logaritmik problemleri çözme örneklerine bakalım.

Logaritma Formülleri Nasıl Kullanılır: Örnekler ve Çözümlerle

Şimdi logaritmalarla ilgili temel teoremlerin kullanımına ilişkin örneklere bakalım.

  1. Bir çarpımın logaritmasının özelliği, b sayısının büyük bir değerini daha basit faktörlere ayırmanın gerekli olduğu görevlerde kullanılabilir. Örneğin, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Cevap 9'dur.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - görebileceğiniz gibi, logaritmanın kuvvetinin dördüncü özelliğini kullanarak, görünüşte karmaşık ve çözülemez bir ifadeyi çözmeyi başardık. Tabanı çarpanlara ayırmanız ve ardından üs değerlerini logaritmanın işaretinden çıkarmanız yeterlidir.

Birleşik Devlet Sınavından Ödevler

Logaritmalara genellikle giriş sınavlarında, özellikle de Birleşik Devlet Sınavında (tüm okul mezunları için devlet sınavı) birçok logaritmik problemle karşılaşılır. Genellikle bu görevler yalnızca A kısmında (sınavın en kolay test kısmı) değil, aynı zamanda C kısmında da (en karmaşık ve hacimli görevler) mevcuttur. Sınav, “Doğal logaritmalar” konusunda doğru ve mükemmel bilgi gerektirir.

Sorunlara örnekler ve çözümler Birleşik Devlet Sınavının resmi versiyonlarından alınmıştır. Bu tür görevlerin nasıl çözüldüğünü görelim.

Log 2 (2x-1) = 4 verildiğinde. Çözüm:
ifadeyi biraz basitleştirerek yeniden yazalım log 2 (2x-1) = 2 2, logaritmanın tanımından 2x-1 = 2 4, dolayısıyla 2x = 17 elde ederiz; x = 8,5.

  • Çözümün hantal ve kafa karıştırıcı olmaması için tüm logaritmaların aynı tabana indirilmesi en iyisidir.
  • Logaritmanın işaretinin altındaki tüm ifadeler pozitif olarak gösterilir, dolayısıyla logaritmanın işaretinin altında olan bir ifadenin tabanı çarpan olarak üssü çıkarıldığında logaritmanın altında kalan ifadenin pozitif olması gerekir.