rumah · Instalasi · Bahan referensi tentang desain struktur kayu. Contoh perhitungan struktur kayu: Buku teks untuk disiplin ilmu “Struktur terbuat dari kayu dan plastik. Sambungan perekat yang benar pada struktur

Bahan referensi tentang desain struktur kayu. Contoh perhitungan struktur kayu: Buku teks untuk disiplin ilmu “Struktur terbuat dari kayu dan plastik. Sambungan perekat yang benar pada struktur

Perhitungan lantai kayu

Menghitung lantai kayu adalah salah satu tugas yang paling mudah, dan bukan hanya karena kayu merupakan salah satu bahan bangunan yang paling ringan. Mengapa demikian, kita akan segera mengetahuinya. Tapi saya akan langsung beritahu Anda jika Anda tertarik dengan perhitungan klasik, sesuai kebutuhan dokumen peraturan, terus Anda Di Sini .

Selama konstruksi atau renovasi rumah kayu menggunakan logam, dan terlebih lagi balok lantai beton bertulang entah bagaimana di luar topik. Jika rumahnya terbuat dari kayu, maka masuk akal untuk membuat balok lantai dari kayu. Hanya saja Anda tidak bisa membedakan secara kasat mata jenis kayu apa yang bisa digunakan untuk balok lantai dan berapa jarak antar balok yang harus dibuat. Untuk menjawab pertanyaan tersebut, Anda perlu mengetahui secara pasti jarak antara dinding penyangga dan setidaknya kira-kira beban pada lantai.

Jelas bahwa jarak antara dinding berbeda, dan beban di lantai juga bisa sangat berbeda. Menghitung lantai jika ada loteng non-perumahan di atasnya, dan menghitung lantai adalah hal yang sama sekali berbeda. lantai untuk ruangan di mana partisi akan dibangun di masa depan, bak mandi besi cor, toilet perunggu dan banyak lagi.

Struktur kayu

Proses konstruksi dalam skala apa pun tidak hanya melibatkan penggunaan bahan bangunan berkualitas tinggi, tetapi juga kepatuhan terhadap peraturan dan regulasi. Hanya kepatuhan yang ketat terhadap instruksi dan standar yang ditetapkan yang akan memberikan hasil terbaik berupa struktur yang kuat, andal, dan tahan lama. Tempat khusus dalam industri konstruksi ditempati oleh material seperti kayu. Pada zaman dahulu, pemukiman dan kota pertama dibangun dari bahan baku kayu. Dalam industri konstruksi modern, kayu tidak kehilangan relevansinya dan secara aktif digunakan untuk konstruksi struktur yang kompleks. Karena banyaknya jenis bahan kayu, terdapat sejumlah persyaratan untuk pemilihan, perhitungan, dan perlindungan struktur tersebut. Kumpulan Norma dan Aturan edisi terkini adalah (SNiP) 11 25 80.

Kenapa tepatnya sebatang pohon? Masalahnya adalah bahan alami dibedakan oleh estetika alami, kemampuan manufaktur yang tinggi, dan berat jenis yang rendah, yang merupakan keunggulannya yang tidak dapat disangkal. Itu sebabnya banyak bangunan terbuat dari kayu. Apa itu SNiP? Setiap desain memiliki karakteristik tertentu, indikator kekuatan mekanik dan ketahanan terhadap berbagai faktor, yang menjadi dasar pelaksanaan kegiatan desain dan perhitungan teknis. Semua pekerjaan dilakukan sesuai dengan persyaratan SNiP.

Norma dan peraturan konstruksi (SNiP) adalah seperangkat persyaratan peraturan yang ketat dalam aspek hukum, teknis dan ekonomi. Dengan bantuan mereka, kegiatan konstruksi, survei arsitektur dan desain, serta kegiatan teknik diatur.

Sistem standar diciptakan pada tahun 1929. Evolusi penerapan peraturan perundang-undangan adalah sebagai berikut:

  • pada tahun 1929 - pembuatan seperangkat peraturan dan regulasi sementara untuk mengatur proses desain, konstruksi bangunan dan struktur untuk berbagai tujuan fungsional;
  • pada tahun 1930 - pengembangan peraturan dan regulasi untuk pengembangan kawasan berpenduduk, serta desain dan konstruksi bangunan;
  • pada tahun 1958 - seperangkat aturan yang diperbarui untuk perencanaan dan pembangunan kota.

Di Uni Soviet, standar semacam itu tidak hanya dikonsolidasikan persyaratan teknis, tetapi juga norma hukum yang membagi tugas, hak dan tanggung jawab pokok karakter proyek konstruksi: insinyur dan arsitek. Setelah tahun 2003, hanya beberapa norma dan persyaratan yang harus dilaksanakan secara wajib, yang berada dalam kerangka Undang-Undang “Tentang peraturan teknis seperangkat aturan." Dengan bantuan SNiP, proses standardisasi terpenting diluncurkan, yang mengoptimalkan efisiensi dan efektivitas konstruksi. Versi terbaru SNiP, yang saat ini digunakan dalam industri konstruksi untuk pekerjaan desain, perhitungan dan konstruksi struktur kayu, adalah SNiP 11 25 80. Kontraktor untuk proyek ini adalah karyawan Institut “Pusat Penelitian Konstruksi Nasional”. Kumpulan persyaratan tersebut secara resmi disetujui pada 28 Desember 2010 oleh Kementerian Pembangunan Daerah. Ini mulai berlaku hanya pada tanggal 20 Mei 2011. Segala perubahan yang terjadi dalam peraturan dan standardisasi tergambar jelas dalam edisi terkini, yang diterbitkan setiap tahun dalam publikasi informasi khusus “Standar Nasional”.

Struktur kayu asli

Ketentuan umum

Seperti halnya dokumen peraturan konsolidasi yang dikembangkan untuk mengatur kegiatan tertentu, SNiP 11 25 80 memuat ketentuan-ketentuan pokok.

Pemasangan elemen kayu

Berikut beberapa di antaranya:

  1. Semua persyaratan yang diberikan dalam dokumen SNiP harus dipatuhi secara ketat selama pembangunan gedung baru atau kegiatan rekonstruksi. Aturan tersebut juga berlaku untuk desain dan konstruksi kayu struktur pendukung untuk saluran listrik.

Penting!

Semua peraturan dan ketentuan tidak berlaku untuk konstruksi bangunan sementara, struktur hidrolik atau jembatan.

  1. Saat merancang struktur kayu, penting untuk memberikan perlindungan berkualitas tinggi terhadap segala jenis kerusakan dan pengaruh negatif dari luar. Hal ini terutama berlaku untuk proyek yang dioperasikan dalam kondisi atmosfer yang tidak menguntungkan dan kelembaban tinggi. Edisi yang diperbarui memberikan perlindungan terhadap kebakaran, kerusakan biologis, pembusukan, dan segala kemungkinan “masalah” selama penggunaan di masa mendatang.
  2. Menurut persyaratan SNiP, struktur yang terbuat dari berbagai jenis kayu harus memenuhi standar desain dalam hal sifat menahan beban dan kemungkinan deformasi. Dalam hal ini, perlu memperhitungkan derajat, sifat dan durasi beban operasional.
  3. Semua pangkalan dirancang dengan pertimbangan wajib atas produksinya, pengangkutan masing-masing bagian, sifat operasional, dan spesifikasi pemasangan.
  4. Tingkat keandalan struktur yang diperlukan ditentukan menggunakan ukuran desain dan kualitas pengobatan pelindung, memperkuat keselamatan kebakaran.
  5. Di lingkungan di mana terdapat pemanasan intens yang bersifat konstan atau sistematis, struktur kayu digunakan dalam kisaran suhu yang diizinkan. Untuk kayu yang tidak direkatkan, nilai maksimum yang diizinkan tidak boleh melebihi 50 derajat, dan untuk kayu yang direkatkan - tidak lebih dari 35 derajat.
  6. Saat mengembangkan gambar, informasi berikut harus digunakan: fitur dan jenis kayu, lem dan spesifikasinya, persyaratan individu untuk bahan tersebut.

Ini hanyalah ketentuan umum dari seperangkat norma dan aturan edisi terkini, yang harus menjadi pedoman bagi setiap orang, baik itu konstruksi industri maupun individu.

Struktur spasial terbuat dari kayu

Pemilihan bahan

Namun tidak hanya perancangan dan konstruksi suatu bangunan saja yang diatur oleh seperangkat peraturan perundang-undangan. SNiP edisi kali ini menjelaskan secara detail aspek pemilihan bahan baku untuk keperluan tertentu. Semuanya penting: kondisi pengoperasian struktur kayu, kualitas perawatan pelindung, dan agresivitasnya lingkungan, dan tujuan fungsional setiap komponen.

Papan bermata kering

SNiP 11 25 80 menjelaskan secara rinci semua kemungkinan situasi dan standar pemilihan bahan. Mari kita pertimbangkan poin utamanya:

  • Untuk struktur kayu, biasanya, kayu dari berbagai spesies jenis konifera digunakan. Untuk elemen yang menjalankan fungsi penting dalam struktur, seperti pasak atau bantalan, digunakan kayu keras.

Penting!

Untuk membuat penyangga saluran listrik, edisi SNiP 11 25 80 menyiratkan penggunaan larch atau pinus. Dalam beberapa kasus, kayu cemara atau cemara digunakan.

Mengapa tumbuhan runjung? Bukan hanya biayanya yang rendah. Kehadiran resin dalam jumlah besar memberikan dasar kayu penghalang yang andal terhadap pembusukan serta impregnasi khusus dan antiseptik.

Papan bermata terbuat dari jarum pinus

  • Elemen struktur kayu yang menahan beban harus memenuhi standar GOST 8486-66, 2695-71 dan 9462-71.
  • Kekuatan bahan kayu memenuhi standar yang ditetapkan; ketahanannya tidak boleh lebih rendah dari nilai standar.
  • Kadar air kayu tidak boleh melebihi 12%.
  • Bahan mentah tidak boleh mengandung lapisan silang, simpul dalam jumlah besar, atau kemungkinan cacat lainnya.
  • Jika kayu dari spesies yang kurang tahan terhadap pembusukan (birch, beech, dan lainnya) digunakan, kayu tersebut harus dirawat dengan hati-hati dengan impregnasi dan antiseptik khusus.
  • Jika digunakan kayu dengan penampang bulat, maka nilai kemiringan pada perhitungan teknis suatu struktur kayu menurut SNiP 11 25 80 adalah sebesar 0,8 per 1 meter panjangnya. Pengecualian adalah larch; dihitung dalam urutan 1 sentimeter per 1 meter panjangnya.
  • Tingkat kepadatan kayu atau lembaran kayu lapis diatur dengan cara yang ditentukan dalam kumpulan aturan 11 25 80. Ini membantu untuk menghitung berat struktur masa depan.

Pilihan perekat sintetis tergantung pada kondisi pengoperasian dan jenis kayu untuk strukturnya.

Membangun rumah dari kayu gelondongan besar

Selain umum kebutuhan operasional Suhu dan kelembapan bukanlah hal yang penting. Kumpulan aturan 11 25 80 dengan jelas menyatakan standar berikut untuk berbagai kondisi pengoperasian struktur kayu:

Kondisi suhu dan kelembabanKarakteristik kondisi operasiBatas kelembaban kayu %
Kayu laminasiKayu tidak dilaminasi
Di ruangan yang dipanaskan, kelembaban relatif hingga 35 derajat
Sebuah 1Kurang dari 60%9 20
Sebuah 2Lebih dari 60 dan hingga 75%12 20
Sebuah 2Lebih dari 60 dan hingga 75%12 20
Sebuah 3Lebih dari 75 dan hingga 95%15 20
Di dalam ruangan yang tidak dipanaskan
B1Di zona kering9 20
B 2Di zona normal12 20
B3Di area kering atau normal dengan kelembapan konstan kurang dari 75%15 25
Pada di luar rumah
DALAM 1
Di daerah kering
9 20
PADA 2Di zona normal12 20
DI 3Di daerah basah15 25
Dari segi bangunan dan struktur
G 1Bersentuhan dengan tanah atau di dalam tanah- 25
G 2Melembabkan secara konstan- Tidak terbatas
G3Di dalam air- Juga

Keseluruhan ketentuan pada bagian “Materi” edisi 11 25 80 harus diperhitungkan tanpa gagal. Pilihan kayu yang tepat, serta komponen tambahan, menentukan daya tahan dan kekuatan struktur.

kayu Aspen

Karakteristik desain

SNiP 11 25 80 edisi terbaru saat ini merupakan panduan efektif dan informatif untuk menciptakan karya yang tahan lama dan struktur yang tahan lama dari berbagai jenis kayu.

Balok dari berbagai jenis kayu

Salah satu poin utama pemilihan adalah kesesuaian semua jenis jenis kayu dengan daftar karakteristik ketahanan yang diperlukan. Indikator utamanya adalah sebagai berikut:

  1. Karakteristik pembengkokan, penghancuran dan kompresi serat kayu. Dalam perhitungan teknis, ukuran dan bentuk penampang suatu elemen bangunan sangatlah penting.
  2. Derajat pemanjangan sepanjang serat. Indikatornya, pada umumnya, berbeda untuk elemen yang direkatkan dan tidak direkatkan.
  3. Karakteristik kompresi dan keruntuhan sepanjang serat kayu di seluruh area.
  4. Indikator lokal keruntuhan serat. Perlu Anda ketahui bahwa untuk komponen pendukung struktur, nodal dan frontal, pada tempat keruntuhan dengan sudut lebih dari 60 derajat, indikatornya mungkin berbeda.
  5. Mencukur sepanjang serat. Hal ini dapat bervariasi pada lekukan komponen struktur yang tidak direkatkan atau direkatkan, serta pada takik ujung untuk tegangan ultimit.
  6. Memotong gandum. Ciri-cirinya berbeda pada sambungan elemen yang direkatkan atau tidak direkatkan.
  7. Derajat kekuatan tarik elemen kayu laminasi terhadap serat.

Spesies kayu utama

Saat memilih kayu untuk membuat struktur, Anda harus mengetahui subkelompok spesies:

  • tumbuhan runjung – larch, cemara, cedar;
  • gugur keras - oak, ash, maple, hornbeam, elm, birch, beech;
  • gugur lembut - poplar, alder, linden, aspen.

Papan kayu ek kering

Penting!

Untuk setiap jenis kayu, performa optimalnya berbeda-beda.

Semua perhitungan dilakukan pada tahap desain struktur. Untuk menghindari kesalahan yang besar, dan untuk memastikan bahwa angka-angka tersebut sedekat mungkin dengan angka sebenarnya, maka perlu menggunakan rumus yang disediakan oleh SNiP 11 25 80 edisi terbaru. Untuk mendapatkan nilai yang diinginkan, Anda perlu mengalikan indikator kayu individu dengan koefisien kondisi operasi struktur. Koefisien kondisi pengoperasian bergantung pada banyak faktor: suhu udara, tingkat kelembapan, keberadaan lingkungan agresif, durasi beban variabel dan konstan, spesifikasi pemasangan. Penggunaan kayu lapis konstruksi laminasi juga memerlukan kepatuhan terhadap standar dan peraturan yang ditetapkan.

Saat menghitung, indikator berikut mengenai bidang lembaran diperhitungkan:

  1. Peregangan.
  2. Kompresi.
  3. Membengkokkan.
  4. Memotong.
  5. Potongannya tegak lurus.

Semua indikator bergantung pada jenis kayu yang menjadi dasar lembaran kayu lapis, serta jumlah lapisannya. Selain indikator utama, ada satu lagi indikator yang penting dalam mendesain struktur kayu. Ini adalah kepadatan. Nilai ini sangat tidak stabil dan dapat berubah bahkan pada skala satu jenis pohon. Mengapa penting untuk mengukur kepadatan? Hal inilah yang akan menentukan berat struktur yang dihasilkan akibat pekerjaan konstruksi. Kepadatan kayu dipengaruhi oleh beberapa faktor, seperti umur pohon, kadar air. Untuk mencapai kepadatan optimal, teknik seperti pengeringan digunakan. Tergantung pada kepadatan individu, kayu dapat dibagi menjadi ringan, sedang dan berat. Yang paling ringan dianggap pinus, poplar, dan linden. Spesies dengan kepadatan sedang termasuk elm, beech, ash, dan birch. Yang paling padat termasuk kayu ek, hornbeam atau maple. Ketika kepadatan meningkat, sifat mekaniknya akan berubah: semakin padat suatu material, semakin kuat tarik dan tekannya.

SNiP II-25-80 edisi terbaru

Sambungan perekat yang benar pada struktur

Pemilihan lem untuk jenis kayu tertentu sangatlah penting. Kekuatan struktur, keandalan dan daya tahan operasi tanpa tanda-tanda deformasi sedikit pun bergantung pada hal ini.

Lem kayu

Menurut edisi SNiP 11 25 80 digunakan jenis berikut lem:

  1. Lem resorsinol fenolik atau resorsinol digunakan untuk menyambung kayu atau triplek. Cocok untuk kondisi pengoperasian dimana suhu kelembaban lebih dari 70%. Rahasianya terletak pada kimia dasar: reaksi resorsinol dan formaldehida menghasilkan resin termoaktif. Semakin banyak resorsinol dalam lem, semakin tinggi suhu pelunakannya. Dalam kondisi suhu dan kelembapan tinggi, penggunaan lem fenol-resorsinol direkomendasikan. Keuntungannya adalah tingkat kekuatan awal dan operasional yang tinggi, biaya rendah dan ketahanan terhadap cuaca. Minus - lemnya beracun, karena fenol bebas dilepaskan.
  2. Perekat resorsinol akrilik digunakan untuk kondisi yang sama seperti perekat resorsinol fenolik. Dia berbeda kinerja tinggi tahan cuaca dan tahan lembab. Perekat ini stabil, tahan lama bahkan dalam kondisi pengoperasian yang keras, dan memiliki kemampuan manufaktur yang tinggi.
  3. Perekat fenolik secara aktif digunakan dalam industri pengerjaan kayu dan digunakan untuk merekatkan kayu lapis untuk penggunaan di luar ruangan. Karakteristik utama yang menguntungkan adalah peningkatan stabilitas mekanis di bawah beban geser, elastisitas yang sangat baik, ketahanan getaran dan ketahanan yang baik terhadap beban pengelupasan.
  4. Perekat urea digunakan untuk perawatan permukaan kayu. Dalam kasus seperti itu, larutan lem urea yang diawetkan secara dingin digunakan. Solusinya menembus kayu, menjadikannya lebih keras, membentuk penghalang terhadap kontaminasi, dan meningkatkan ketahanan terhadap abrasi. Lem urea-melanin merupakan turunan. Bahan tambahan dalam bentuk melanin hampir dapat menggandakan umur simpan. Harga lem urea rendah, dan ketahanan terhadap kelembaban siklik juga rendah.

Saat memilih perekat untuk struktur kayu, Anda harus mengandalkan standar dan rekomendasi yang berlaku umum yang ditetapkan dalam edisi SNiP 11 25 80.

Lem kayu

Kayu laminasi atau kayu biasa?

Ikatan perekat adalah salah satu metode yang paling progresif dan dapat diandalkan. Jenis sambungan ini berfungsi dengan baik untuk chipping dan memudahkan untuk menutupi bentang lebih dari 100 m. Struktur kayu yang direkatkan dari banyak elemen kecil memiliki sejumlah keunggulan dibandingkan kayu solid. Tetapi untuk melaksanakan proyek dan mencapai kekuatan dan efektivitas maksimum, semua kondisi teknis harus dipatuhi dengan ketat. Saat ini, produksi seperti itu biasanya dilakukan secara mekanis dan otomatis.

Kayu laminasi yang direkatkan

Apa kelebihan kayu laminasi untuk membuat struktur yang andal?

  • Melakukan pembuatan struktur bebas limbah.
  • Rasionalisasi penggunaan spesies kayu yang berbeda dalam satu paket.
  • Peningkatan optimalisasi desain karena penggunaan sifat anisotropik kayu secara tepat sasaran.
  • Penghapusan mutlak segala batasan pada bermacam-macam, baik panjangnya maupun ukuran penampangnya.
  • Kekencangan dan sifat insulasi suara yang tinggi.
  • Peningkatan ketahanan api dibandingkan dengan kayu solid.
  • Indikator yang sangat baik dari kelembaman kimia dan ketahanan biologis.

Pemilihan lem yang berkualitas untuk membuat sambungan menjadi dasar kekuatan dan daya tahan struktur kayu dalam konstruksi. Kelembaban sangat penting.

Kayu laminasi

Penting!

Semakin kering dan tipis setiap elemen struktur perekat, semakin kecil kemungkinan terjadinya retakan. Kayu yang tidak dikeringkan secara memadai dapat menyebabkan perbedaan lapisan perekat selama pengoperasian.

Secara eksternal, kayu laminasi tidak berbeda dengan kayu solid, sehingga estetika alaminya tetap terjaga. Jenis struktur ini tidak hanya lebih kuat dan tahan lama. Namun juga menciptakan aura kehangatan dan kenyamanan unik yang sangat penting dalam membangun sarang keluarga yang nyaman.

Sambungan simpul dari kayu laminasi

Perlindungan dari kehancuran dan kebakaran

Perlindungan yang andal terhadap struktur kayu dari kehancuran adalah kunci umur panjang. Saat ini, banyak situasi bencana yang dapat dicegah dengan melakukan “terapi” berkualitas tinggi dan komprehensif secara tepat waktu. SNiP 11 25 80 edisi saat ini menyiratkan perlindungan struktur kayu, seperti yang mereka katakan, “di semua lini,” karena kayu adalah bahan yang diberikan oleh alam kepada kita, sangatlah wajar jika pengaruh eksternal yang agresif dapat menyebabkan kerusakan biologis dan deformasi. Untuk memasang penghalang yang andal, Anda harus dapat memilih dan menggunakan alat khusus dengan benar. Ada banyak metode perlindungan: perawatan permukaan, impregnasi, pelapisan difus, dan bahkan pengawetan bahan kimia.

Melindungi kayu dari kelembaban

Selain kegiatan pengolahan, perhatian harus diberikan pada:

  • pencegahan konstruksi, yaitu menggunakan kayu yang dikeringkan dengan udara dalam prosesnya, menghilangkan area yang rusak;
  • memantau kelembaban dan suhu selama pengoperasian;
  • mematuhi semua kondisi sanitasi dan teknis;
  • menyediakan sistem ventilasi yang fungsional;
  • pasang kedap air dan penghalang uap.

Cara yang paling mudah digunakan dan efektif yang telah terbukti efektif dalam praktiknya adalah antiseptik.

Melindungi kayu dengan antiseptik

Edisi SNiP 11 25 80 menentukan klasifikasi berikut:

  1. Agen antiseptik yang digunakan dalam larutan air. Ini termasuk natrium fluorida, natrium fluorida, amonium silikon fluorida, serta larutan lainnya. Mereka dimaksudkan untuk pemrosesan struktur yang terlindung secara maksimal dari kelembaban dan kontak langsung dengan air.
  2. Pasta antiseptik berbahan dasar antiseptik yang larut dalam air. Zat aktif sarana tersebut adalah bitumen, kuzbasslak atau tanah liat. Mereka praktis tidak tersapu oleh air, sehingga diterapkan pada struktur kayu dengan kelembaban apa pun. Pasta semacam itu juga bisa digunakan untuk mengisi retakan, mencegah pembusukan.
  3. Antiseptik berminyak. Dasarnya adalah minyak serpih, kokas, dan batubara. Antiseptik akan melindungi struktur yang bersentuhan dengan air atau berada dalam kondisi buruk dengan kelembapan tinggi.
  4. Antiseptik yang digunakan dalam pelarut organik. Agen antiseptik ditujukan untuk perawatan luar kayu yang andal elemen bangunan.

Pernis kayu

Pilihan antiseptik ditentukan oleh tujuan fungsional utama struktur kayu.Menurut metode penggunaannya, mereka dibagi menjadi dua kelompok bersyarat:

  • Kelompok pertama adalah struktur yang dioperasikan dalam kondisi buruk atau lingkungan agresif. Ini termasuk elemen yang digunakan di luar ruangan atau elemen yang memerlukan perlindungan efektif.
  • Kelompok kedua adalah struktur yang mengalami kelembapan berkala (langit-langit, balok, balok, dan banyak lagi).

Sebelum melakukan tindakan antiseptik, para ahli merekomendasikan untuk melakukan desinfeksi tambahan agar perlindungan struktur dapat dilakukan dengan sempurna dan memenuhi semua persyaratan.

Bagaimana memilih antiseptik untuk kayu

Proteksi kebakaran

Seperti yang Anda ketahui, kayu merupakan salah satu material yang dalam kondisi tertentu mudah terbakar. Untuk meningkatkan karakteristik keselamatan kebakaran elemen bangunan kayu, perlu disediakan proteksi kebakaran yang berkualitas tinggi. Ada beberapa jenis pelapis khusus untuk ini:

  1. Tahan cuaca.
  2. Tahan lembab.
  3. Tidak tahan lembab.

Proteksi kebakaran pada struktur bangunan

Bahan kimia dalam bentuk pasta, impregnasi, pelapis biasanya digunakan untuk struktur kayu yang terlindung dari pengaruh langsung atmosfer. Mereka diterapkan dalam dua lapisan, dengan interval 12 jam di antara mereka. Pelapisan digunakan untuk menutupi elemen struktur yang tidak memerlukan pengecatan: kasau, purlin dan sejenisnya. Perlindungan dapat diterapkan pada permukaan dan menghamili elemen kayu secara mendalam, memberikan struktur sifat tahan api.

Proteksi kebakaran untuk kayu

Salah satu cara yang paling populer dan efektif adalah impregnasi tahan api. Tahan api adalah zat yang mencegah penyalaan dan mencegah penyebaran api ke permukaan.

Selain itu, perlindungan yang digunakan berupa cat organosilikat khusus atau enamel perklorovinil. Perlindungan paling tahan lama terhadap kebakaran adalah kombinasi impregnasi struktur dengan pengecatan berikutnya.

Proteksi kebakaran

Dasar-dasar Desain

Informasi terkini yang terdapat dalam SNiP 11 25 80 edisi terbaru berfungsi sebagai panduan baik bagi pemula di bidang konstruksi maupun profesional berpengalaman.Dasar-dasar perancangan dan pembuatan struktur multikomponen kayu yang dimuat dalam edisi 11 25 80 adalah sebagai berikut:

  • Ukuran setiap elemen struktur kayu harus dipilih dengan mempertimbangkan kemungkinan transportasi.
  • Jika bentang pondasi kayu yang tidak ditopang adalah 30 meter atau lebih, salah satu tumpuan dibuat dapat dipindah-pindah. Hal ini membantu mengimbangi pemanjangan bentang dalam kondisi suhu dan kelembapan yang tidak stabil.
  • Indikator kekakuan spasial ditingkatkan dengan memasang pengikat vertikal dan horizontal. Untuk meningkatkan kekuatan, sambungan melintang struktur dipasang pada bagian atas elemen penahan beban atau pada bidang sabuk vertikal.
  • Dimensi penyangga pelat penutup papan atau kayu lapis harus minimal 5 sentimeter. Perlindungan ini akan membantu mencegah tekuk sebelum elemen penghubung yang diperlukan dipasang.
  • Jumlah elemen penghubung balok komposit harus tiga. Lebih mudah menggunakan pasak pelat sebagai pengencang penghubung.
  • Desain memerlukan pengangkatan 1/2 bentang dan dukungan berengsel. Prinsip yang sama digunakan untuk mendesain balok laminasi dalam suatu struktur.

Penting!

Balok yang direkatkan harus dipasang hanya pada arah vertikal papan. Penataan horizontal hanya diperbolehkan saat merakit balok kotak.

  • Kayu lapis dengan kekuatan yang meningkat bertindak sebagai dinding pelindung dari balok laminasi. sifat tahan air. Apalagi ketebalannya tidak boleh kurang dari 8 milimeter.

Struktur kayu

Persyaratan yang ditetapkan oleh peraturan dan regulasi edisi saat ini 11 25 80 harus dipatuhi dengan ketat. Dengan demikian, diperoleh dasar yang andal dan tahan lama untuk struktur tujuan fungsional apa pun.

Struktur kayu multi-komponen

Ketentuan Umum

KE desain selesai dikenakan persyaratan tertentu yang diatur dalam SNiP 11 25 80.

Rumah kayu terbuat dari kayu

Sesuai dengan peraturan dan ketentuan yang ditetapkan, hal-hal berikut harus dipastikan:

  1. Perlindungan kayu yang tahan lama dari spesies apa pun dari pengaruh air tanah, curah hujan, dan limbah.
  2. Perlindungan material yang andal dari pembekuan, akumulasi kondensasi, kemungkinan kejenuhan dengan air dari tanah atau bangunan di sekitarnya.
  3. Sistem ventilasi yang sempurna (terus menerus atau berkala) untuk mencegah penumpukan kayu gelondongan, busuk, jamur atau lumut pada permukaan struktur.

Rumah kayu

Organisasi, desain dan pekerjaan konstruksi harus dilakukan secara kompleks, dengan ketat mengikuti standar dan aturan yang ditetapkan untuk konstruksi struktur kayu. Ada banyak faktor yang perlu dipertimbangkan. yang pada akhirnya akan menentukan masa pakai struktur, kekuatan dan keandalannya. Untuk memperoleh hasil yang optimal perlu mengikuti seluruh norma dan aturan yang telah ditetapkan, serta mengikuti pemutakhiran SNiP edisi 11 25 80.

Struktur plafon kayu multi komponen

Semua bahan bangunan memiliki area penggunaan yang rasional dan efisien. Hal ini juga berlaku untuk kayu, yang merupakan bahan bangunan lokal di banyak wilayah di negara kita. Di beberapa wilayah, kayu tersedia dalam jumlah melimpah (disebut wilayah surplus hutan).

Negara kita adalah negara pertama di dunia dalam hal jumlah kawasan hutan (Brasil peringkat ke-2, Kanada peringkat ke-3, Amerika Serikat peringkat ke-4), yang menempati hampir separuh wilayah Rusia – sekitar 12,3 juta km 2 . Bagian utama hutan Rusia (sekitar ¾ bagiannya) terletak di wilayah Siberia, Timur Jauh, dan di wilayah utara negara bagian Eropa. Spesies yang dominan adalah tumbuhan runjung: 37% hutan adalah larch, 19% - pinus, 20% - cemara dan cemara, 8% - cedar. Pohon-pohon gugur menempati sekitar ¼ dari kawasan hutan kita. Spesies yang paling umum adalah birch, menempati sekitar 1/6 dari total kawasan hutan.

Cadangan kayu di hutan kita berjumlah sekitar 80 miliar m3. Sekitar 280 juta m3 dipanen setiap tahunnya. kayu industri (yaitu cocok untuk pembuatan struktur dan produk). Namun, jumlah ini tidak menghabiskan pertumbuhan alami kayu tahunan di daerah terpencil di Siberia dan Timur Jauh.

Sejarah penciptaan bangunan kayu dan strukturnya sudah ada sejak zaman kuno. Bentuk struktur bangunan yang pertama adalah rangka kayu persegi panjang. Luas dan volume struktur yang sedang dibangun secara bertahap meningkat, dan tujuan fungsional bangunan tersebut diperluas. Rumah kayu mulai dibangun denah poligonal dengan kehadirannya dinding bagian dalam, memastikan kekekalan struktur dan stabilitas dinding luar.

Kehadiran cadangan hutan yang sangat besar di wilayah Rusia menjadi dasar penggunaan kayu selama berabad-abad sebagai bahan bangunan untuk konstruksi bangunan dan struktur untuk keperluan perumahan, komersial, keagamaan, dan lainnya. Hingga saat ini, bangunan unik yang dibuat oleh arsitek berupa rumah kayu lebih dari 250 tahun yang lalu masih bertahan. Contoh konstruksi tersebut adalah gereja-gereja yang ada di Kizhi di Danau Onega, bangunan di Malye Karely di wilayah Arkhangelsk (Gbr. 1).

Struktur teknik pertama umat manusia - bangunan tiang pancang, jembatan dan bendungan - juga terbuat dari kayu. Sejak akhir abad ke-17, ketika kayu gelondongan dapat digergaji menjadi balok dan papan, konstruksi kayu memasuki tahap baru. Bagian kayu yang lebih ekonomis dan ringan memungkinkan terciptanya sistem batang yang efektif yang dapat menjangkau bentang yang signifikan, yang memberikan dorongan bagi perkembangan arsitektur dan konstruksi jembatan. Contoh paling mencolok dari penggunaan kayu sebagai struktur kasau adalah konstruksi puncak menara Admiralty (Gbr. 2), yang dilakukan sesuai dengan desain I.K. Korobova dan diselamatkan oleh A.D. Zakharov selama rekonstruksi menara pada awal abad ke-19, rangka untuk menutupi Manege di Moskow dengan bentang 48 m, dibangun pada tahun 1817 oleh A.A. Betancourt (Gbr. 3).

Gambar 1 – Gereja kayu di Kizhi di Danau Onega

Gambar 2 – Gedung Angkatan Laut di St. Petersburg

Gambar 3 – Pemasangan rangka penutup Manege di Moskow

Pengalaman bertahun-tahun dalam konstruksi bangunan untuk berbagai keperluan memungkinkan untuk menentukan area penerapan struktur kayu yang rasional:

1. Visual dan bangunan umum, fasilitas atletik, paviliun pameran, pasar dan lain-lain dengan bentang 18 sampai 100 m (lihat contoh pada Gambar 4).

2. Pelapisan bangunan sipil, industri dan pertanian. Dianjurkan untuk menggunakan rangka papan dan batu bulat dengan perakitan di lokasi konstruksi (efektivitas penerapan ditentukan oleh ringan, kekuatan, dan kondisi yang menguntungkan untuk mengatasi kekurangan).

3. Bangunan dengan lingkungan yang agresif secara kimia. Pertama, bangunan gudang dengan bentang hingga 45 m untuk memuat ulang dan menyimpan pupuk mineral.

4. Konstruksi perumahan kayu bertingkat rendah.

5. Bangunan industri pertanian.

6. Bangunan tanpa pemanas untuk keperluan produksi dan tambahan perusahaan industri.

7. Bangunan dan gudang yang tidak dipanaskan untuk penyimpanan dan pengolahan hasil pertanian.

8. Bangunan prefabrikasi dengan pasokan lengkap bentang kecil untuk daerah terpencil di Utara Jauh.

9. Struktur teknik - penyangga saluran transmisi listrik (dengan tegangan hingga 35 kV), tiang dan menara triangulasi dan radiotransparan, jembatan ringan, jembatan penyeberangan.

Gambar 4 – Diagram kerangka arena atletik lintasan dan lapangan dalam ruangan di kompleks olahraga Meteor di Zhukovsky dengan lengkungan papan laminasi yang menahan beban

Tidak disarankan menggunakan struktur kayu di tempat-tempat di mana upaya untuk melindungi kayu dari api dan kelembapan yang bergantian (dan karenanya pembusukan) sulit dilakukan:

Toko-toko panas;

Bangunan industri dengan beban derek yang besar;

Tempat dengan kelembaban operasional tinggi (kecuali kamar mandi).

Meskipun kayu telah digunakan sebagai struktur bangunan selama berabad-abad, pencarian solusi teknis baru terus berlanjut. Selama 20 tahun terakhir, pengembangan sambungan kaku elemen kayu laminasi (dengan analogi dengan bagian tertanam dari struktur beton bertulang) telah berlangsung, yang memungkinkan terbukanya arah baru struktur kayu laminasi prefabrikasi. Dalam praktik konstruksi di Rusia dan luar negeri, sejumlah besar bangunan dan struktur bentang besar yang terbuat dari struktur kayu laminasi prefabrikasi telah diterapkan. Kombinasi balok laminasi terpaku dengan tulangan linier elemen kayu laminasi merupakan langkah lebih lanjut dalam pengembangan struktur kayu laminasi untuk bangunan bentang sangat panjang.

Bentuk progresif dari struktur kayu industri:

1. Papan laminasi monolitik dan struktur kayu lapis yang direkatkan dalam bentuk balok, lengkungan, rangka dan sistem gabungan.

2. Rangka logam-kayu dengan tali bagian atas papan laminasi.

3. Struktur tata ruang jaring melingkar terbuat dari kusen standar padat dan direkatkan.

Berbeda dengan kayu, plastik mulai digunakan dalam struktur sejak pertengahan abad terakhir, setelah munculnya produksi industri bahan sintetis.

Plastik konstruksi struktural utama meliputi:

Fiberglass berkekuatan tinggi;

Fiberglass transparan kurang tahan lama;

kaca plexiglass;

plastik vinil;

busa busa;

Kain dan film yang tahan udara dan tahan air;

Plastik kayu.

Struktur plastik digunakan terutama dalam bentuk panel-panel dinding, pelat penutup, elemen penutup tembus pandang dari berbagai bentuk dan banyak desain individual diproduksi dalam jumlah kecil.

Plastik fiberglass paling tahan lama, yang kekuatan tekan dan tariknya dihitung mencapai 100 MPa, digunakan untuk membuat elemen struktur bangunan penahan beban. Namun, penerapan ini hanya mungkin dilakukan jika dilakukan studi kelayakan teknis dan ekonomi. Fiberglass transparan digunakan sebagai elemen tembus pandang pada selubung bangunan. Bagian pagar yang transparan terbuat dari kaca plexiglass transparan dan plastik vinil transparan, yang memungkinkan seluruh bagian spektrum matahari dapat melewatinya. Plastik busa ultralight digunakan di lapisan tengah pelapis dan dinding penutup yang ringan.

Kelas khusus struktur plastik adalah membran (kain kuat, tipis, dan tahan air), yang digunakan dalam bentuk struktur pneumatik dan tenda. Materi di dalamnya bekerja dalam ketegangan dan tidak ada bahaya kehilangan stabilitas.

BAB 1. KAYU DAN PLASTIK - BAHAN BANGUNAN

1.1 KEUNGGULAN DAN KEKURANGAN KAYU

Keunggulan utama kayu antara lain:

Ringan. Kayu memiliki kepadatan rata-rata 550 kg/m3 dan 14 kali lebih ringan dari baja, 4,5 kali lebih ringan dari beton, sehingga memungkinkan pengurangan biaya material secara signifikan untuk transportasi, konstruksi pondasi, dan tanpa beban berat. mekanisme pengangkatan selama konstruksi bangunan dan struktur.

Kekuatan. Salah satu indikator efektivitas penggunaan struktur dari berbagai bahan merupakan indikator kekuatan spesifik suatu bahan, yang dinyatakan dengan perbandingan massa jenis bahan terhadap berat volumetriknya. Untuk kayu laminasi perbandingannya adalah 3,66×10 -4 1/m, untuk baja karbon 3,7×10 -4 1/m, untuk kelas beton 22,5 1,85×10 -4 1/m. Hal ini menegaskan kelayakan penggunaan struktur kayu laminasi bersama dengan baja pada bangunan bentang panjang, di mana bobot sendiri sangat penting.

Deformabilitas dan viskositas. Dari semua bahan bangunan tradisional, hanya kayu yang bereaksi lebih sedikit terhadap penurunan pondasi pondasi yang tidak merata. Sifat penghancuran kayu yang kental (dengan pengecualian chipping) memungkinkan redistribusi gaya dalam elemen, yang tidak menyebabkan kegagalan struktur secara instan.

Ekspansi suhu. Koefisien muai linier kayu bervariasi sepanjang serat dan sudutnya. Sepanjang serat, nilai koefisien ini 7-10 kali lebih kecil dibandingkan pada seluruh serat, dan 2-3 kali lebih kecil dibandingkan baja. Fakta ini memungkinkan untuk mengabaikan pengaruh suhu dan tidak memerlukan pembagian bangunan menjadi blok suhu.

Konduktivitas termal. Konduktivitas termal kayu yang rendah, karena strukturnya, menjadi dasar penggunaannya secara luas pada dinding struktur penutup. Koefisien konduktivitas termal kayu 6 kali lebih rendah dibandingkan batu bata keramik, 2 kali lebih rendah dibandingkan beton tanah liat diperluas, beton busa gas dengan kepadatan 800 kg/m 3 dan setara dengan beton busa gas dengan kepadatan sebesar 300 kg/m 3, mis. kepadatannya hampir setengah dari kayu.

Ketahanan kayu terhadap bahan kimia. Kayu dapat digunakan tanpa perlindungan tambahan atau dilindungi dengan pengecatan atau impregnasi permukaan di lingkungan yang agresif secara kimia. Struktur kayu digunakan dalam pembangunan gudang untuk bahan curah yang agresif secara kimia seperti garam kalium dan natrium, pupuk mineral yang merusak beton dan baja. Kebanyakan asam organik tidak menyerang kayu pada suhu normal.

Pembaruan diri kayu. Keunggulan utama kayu dibandingkan bahan bangunan lainnya adalah pembaruan cadangannya secara konstan. Produksi bahan struktural lainnya (baja, beton, plastik, dll.) membutuhkan energi dalam jumlah besar dan mengkonsumsi bahan mentah dalam jumlah besar, yang cadangannya terus-menerus habis.

Kemudahan pemrosesan. Kayu mudah diproses dengan tangan sederhana atau alat listrik. Deformabilitas kayu memungkinkan struktur yang dibuat darinya diberi berbagai bentuk bujursangkar dan lengkung. Produksi struktur bentang kecil dari kayu solid dapat dikuasai secara praktis di stasiun penebangan kayu, di basis industri konstruksi mana pun, yang tidak mungkin dilakukan untuk produksi struktur logam atau beton bertulang.

Kayu, seperti bahan lainnya, memiliki kelemahan:

Heterogenitas, anisotropi kayu dan cacat. Heterogenitas kayu diwujudkan dalam perbedaan struktur dan sifat lapisan tahunan yang terbentuk selama pertumbuhan pohon, tergantung pada kondisi lingkungan (kondisi iklim).

Heterogenitas kayu mempengaruhi variabilitas indikator kekuatan, yang mempersulit perolehan karakteristik kayu yang dihitung secara andal.

Kayu adalah benda yang memiliki tiga sumbu anisotropi di sepanjang arah struktural utama - sepanjang dan melintasi serat dalam arah tangensial dan radial. Perbedaan signifikan dalam kekuatan kayu ketika gaya diterapkan sepanjang dan melintasi serat secara signifikan mempersulit desain struktur kayu dan, pertama-tama, sambungan nodal, yang sering kali menyebabkan peningkatan penampang elemen yang disambung secara tidak rasional.

Cacat utama meliputi simpul, retakan, dan lapisan melintang. Adanya simpul mengubah arah serat kayu atau memutusnya, yang sangat mempengaruhi kekuatan, terutama saat diregangkan, karena terjadi pembebanan yang tidak merata pada semua serat pada penampang.

Ketergantungan sifat fisik dan mekanik kayu pada kelembaban. Kayu memiliki kemampuan menyerap kelembapan karena sifat higroskopisitasnya. Sifat fisik dan mekaniknya juga sangat bergantung pada jumlah kelembaban kayu. Kepadatan kayu jenis konifera yang baru dipotong (kecuali larch) dan kayu keras lunak (aspen, poplar, alder, linden) adalah 850 kg/m3. Saat kelembapan dihilangkan, kepadatannya menurun. Pada kelembaban 15-25% kepadatan diasumsikan 600 kg/m3, dan pada kelembaban 6-12% kepadatan diasumsikan 500 kg/m3. Larch memiliki kepadatan masing-masing 800 kg/m 3 dan 650 kg/m 3, dengan kelembapan masing-masing berkisar 15-25% dan 6-12%. Kayu untuk konstruksi dibedakan:

Mentah dengan kelembaban di atas 25%;

Semi kering dengan kelembaban 12-25%;

Keringkan di udara dengan kelembaban 6-12%.

Merayap dari kayu. Dengan paparan beban jangka pendek, kayu bekerja hampir elastis, tetapi dengan paparan beban konstan dalam jangka panjang, deformasi meningkat seiring waktu. Bahkan pada tingkat stres yang rendah, creep dapat berlanjut selama bertahun-tahun.

Penghancuran hayati kayu. Berhubungan langsung dengan kadar air kayu. Ketika kelembapan lebih dari 18%, serta adanya oksigen dan suhu positif, timbul kondisi untuk kehidupan jamur pembusuk kayu. Kerusakan kayu juga disebabkan oleh aktivitas serangga yang merusak kayu yang belum dikupas di hutan, di gudang, di area penebangan, dan merusak kayu yang sudah dikupas selama pengolahannya dan selama digunakan dalam bangunan.

Penyebaran api terjadi sebagai akibat dari kombinasi karbon kayu dengan oksigen. Pembakaran dimulai pada suhu sekitar 250 °C. Dan jika kayu cepat terbakar dari luar, maka karena konduktivitas termalnya yang rendah dan munculnya lapisan hangus yang tebal, yang menghalangi aliran oksigen, proses selanjutnya sangat melambat. Oleh karena itu, struktur kayu dengan penampang masif memiliki ketahanan api yang lebih besar dibandingkan struktur logam yang tidak terlindungi.

1.2 STRUKTUR KAYU DAN SIFAT FISIK

Pada penampang batang kayu jenis konifera (pinus, cemara), terlihat beberapa lapisan karakteristik (Gbr. 1.1).

Lapisan luar terdiri dari kulit kayu - 1 dan floem - 2 . Di bawah floem terdapat lapisan kambium yang tipis. Fungsi kulit pohon pada pohon yang sedang tumbuh adalah untuk membawa unsur hara zat organik yang terbentuk di daun ke bawah batang.


Pada penampang melintang, bagian utama ditempati oleh kayu gubal dan inti. Gubalnya terdiri dari sel-sel muda, intinya seluruhnya terdiri dari sel-sel mati. Pada semua jenis pohon, pada usia dini, kayunya hanya terdiri dari kayu gubal, dan hanya seiring berjalannya waktu terjadi kematian sel-sel hidup, biasanya disertai dengan penggelapan.

Selama musim semi, ketika banyak getah muncul di batang, kambium mengembangkan aktivitas yang besar, menyimpan sejumlah besar sel besar di bagian dalam. Di musim panas, ketika jumlah cairan nutrisi berkurang, aktivitas kambium melambat, dan lebih sedikit sel dan ukuran lebih kecil yang disimpan. Di musim dingin, aktivitas vital kambium mereda dan pertumbuhan pohon terhenti. Pengendapan bagian kayu musim semi dan musim panas yang terjadi secara berkala dari tahun ke tahun menjadi penyebab terbentuknya lapisan tahunan (cincin). Lapisan pertumbuhan terdiri dari lapisan kayu terang (earlywood) menghadap ke inti dan lapisan kayu musim panas yang lebih gelap dan padat menghadap ke kulit kayu (latewood).

Fungsi mekanis pada kayu dilakukan terutama oleh sel prosenkim - trakeid, yang sebagian besar terletak secara vertikal. Bergabungnya trakeid dalam arah memanjang terjadi selama proses pertumbuhan. Dengan ujung runcingnya, mereka tumbuh satu sama lain dan menjadi elemen anatomi lainnya, yang disebut “sel parenkim”, yang memiliki dimensi yang sama di ketiga arah aksial. Sel-sel ini merupakan bagian dari “sinar inti” yang menembus beberapa lapisan tahunan dengan arah tegak lurus.

Trakeid membentuk 90% dari total volume kayu, dan 1 cm 3 di antaranya berisi sekitar 420.000 lembar. Trakeid pada lapisan tahunan bagian awal memiliki dinding tipis (2-3 µm) dan rongga internal yang besar, sedangkan trakeid pada lapisan tahunan bagian akhir memiliki dinding yang lebih tebal (5-7 µm) dan rongga yang lebih kecil. Panjang trakeid 2-5 mm, ukuran penampang 50-60 kali lebih kecil dari panjangnya.

Untuk gambaran yang lebih lengkap tentang struktur kayu, dipertimbangkan tiga bagian batang: melintang, radial, dan tangensial (Gbr. 1.2).

Kayu gugur memiliki struktur yang sedikit berbeda dengan kayu jenis konifera. Arah spiral dinding sel kayu keras menyebabkan lengkungan besar dan retak pada kayu selama pengeringan, dan penurunan kemampuan paku. Adanya kekurangan ini dan rendahnya ketahanan terhadap pembusukan membatasi penggunaan kayu keras untuk struktur kayu. Karakteristik kekuatan kayu keras yang lebih tinggi diwujudkan dengan menggunakannya untuk pembuatan elemen penghubung (pin, pasak, pelapis), serta bagian pendukung antiseptik.

Properti fisik kayu

Kepadatan. Karena kelembapan merupakan bagian penting dari massa kayu, nilai kepadatan ditentukan pada kelembapan tertentu. Dengan meningkatnya kelembaban, kepadatan meningkat dan, oleh karena itu, untuk perhitungan ketika menentukan beban permanen, indikator rata-rata yang disajikan dalam standar digunakan.

Untuk struktur yang dioperasikan dalam kondisi di mana kelembaban keseimbangan tidak melebihi 12% (ruangan berpemanas dan tidak berpemanas dengan kelembaban relatif hingga 75%), kepadatan pinus dan cemara 500 kg/m 3, dan larch 650 kg/m 3.



Untuk struktur yang digunakan di luar ruangan atau di dalam ruangan dengan kelembapan tinggi lebih dari 75%, kepadatan pinus dan cemara adalah 600 kg/m3, dan kepadatan larch adalah 800 kg/m3.

Konduktivitas termal kayu tergantung pada kepadatan, kelembaban dan arah serat. Dengan kepadatan dan kelembapan yang sama, konduktivitas termal melintasi serat 2,5-3 kali lebih kecil dibandingkan sepanjang serat. Koefisien konduktivitas termal melintasi serat pada kelembaban standar 12% lebih dari 2 kali lebih rendah dibandingkan pada kelembaban 30%. Indikator-indikator ini dijelaskan oleh struktur tubular serat kayu.

Ekspansi suhu. Koefisien muai panjang sepanjang serat sebanding dengan kepadatan kayu, dan 7 hingga 10 kali lebih besar dari koefisien muai panjang sepanjang serat. Hal ini dijelaskan oleh fakta bahwa ketika dipanaskan, kayu kehilangan kelembapan dan mengubah volumenya.

Dalam praktik desain, deformasi termal praktis tidak dipertimbangkan, karena koefisien muai linier sepanjang serat tidak signifikan.

1.3 SIFAT MEKANIK KAYU

Fitur kayu.

Ukuran: piksel

Mulai tampilkan dari halaman:

Salinan

1 Badan Federal untuk Pendidikan Agen pemerintah lebih tinggi pendidikan kejuruan Universitas Teknik Negeri Ukhta Contoh perhitungan struktur kayu struktur teknik kehutanan tutorial pada disiplin ilmu “Struktur Teknik Kehutanan” Ukhta 008

2 UDC 634* 383 (075) Bab 90 Chuprakov, A.M. Contoh perhitungan struktur kayu struktur teknik kehutanan [Teks]: buku teks. manual untuk disiplin “Struktur teknik kehutanan” / A.M. Chuprakov. Ukhta : USTU, desa : sakit. ISBN Buku teks ini ditujukan bagi mahasiswa peminatan “Teknik Kehutanan”. Buku teks ini berisi contoh-contoh perhitungan elemen dan struktur penahan beban yang terbuat dari kayu, yang secara konsisten menguraikan penerapan prinsip-prinsip dasar desain untuk memecahkan masalah-masalah praktis. Di awal setiap paragraf ada informasi singkat, menjelaskan dan membenarkan metode perhitungan yang digunakan. Manual metodologi telah ditinjau dan disetujui oleh Departemen Teknologi dan Mesin Logging, protokol 14 tanggal 7 Desember 007 dan diusulkan untuk dipublikasikan. Direkomendasikan untuk diterbitkan oleh Dewan Editorial dan Penerbitan Universitas Teknik Negeri Ukhta. Peninjau: V.N. Pantileenko, Ph.D., profesor, kepala. Departemen Teknik Industri dan Sipil; EA. Chernyshov, CEO Perusahaan LLC "Hutan Utara" Universitas Teknik Negeri Ukhta, 008 Chuprakov A.M., 008 ISBN

3 PENDAHULUAN Manual ini terutama memiliki tujuan pendidikan dan metodologis untuk mengajar siswa menerapkan informasi teoritis yang disajikan dalam kursus “Struktur Teknik Kehutanan” dan kemampuan untuk menerapkan SNiP untuk memecahkan masalah praktis. Contoh perhitungan pada setiap bagian diawali dengan informasi singkat untuk menjelaskan dan membenarkan metode perhitungan dan teknik desain yang digunakan. Publikasi ini dimaksudkan sebagai pedoman untuk melakukan latihan praktek selama mempelajari struktur teknik yang terbuat dari kayu, ketika melakukan perhitungan tugas kuliah, serta ketika mengembangkan bagian konstruktif dari proyek diploma. Target panduan ini mengisi kesenjangan dalam perhitungan elemen struktur kayu, kemampuan menerapkan SNiP untuk desain struktur kayu sehubungan dengan dikeluarkannya disiplin ilmu “Dasar-Dasar Konstruksi” dari kurikulum spesialisasi “Teknik Kehutanan”. Struktur kayu perlu dirancang sesuai dengan SNiPII.5.80 “Struktur kayu. Standar desain" dan SNiPII.6.74 "Beban dan dampak. Standar desain". Di akhir manual, data tambahan dan referensi yang diperlukan untuk perhitungan struktural disediakan dalam bentuk lampiran. 3

4 BAB 1 PERHITUNGAN ELEMEN STRUKTUR KAYU Struktur kayu dihitung berdasarkan dua keadaan batas: daya tampung(kekuatan atau stabilitas) dan deformasi (defleksi). Saat menghitung menurut keadaan batas pertama, perlu diketahui ketahanan desain, dan menurut keadaan batas kedua, modulus elastisitas kayu. Dasar resistensi yang dihitung kayu pinus dan cemara dalam struktur yang terlindung dari kelembaban dan panas diberikan. Hambatan yang dihitung dari kayu spesies lain diperoleh dengan mengalikan hambatan utama yang dihitung dengan koefisien transisi yang diberikan dalam. Kondisi pengoperasian struktur yang tidak menguntungkan diperhitungkan dengan memasukkan koefisien untuk mengurangi resistensi desain, yang nilainya diberikan dalam [1, tabel. 10]. Saat menentukan deformasi struktur yang terletak di kondisi normal Dalam pengoperasiannya, modulus elastisitas kayu, apa pun spesies kayu tersebut, diasumsikan sama dengan E = kgf/cm. Dalam kondisi operasi yang tidak menguntungkan, faktor koreksi diterapkan sesuai dengan. Kadar air kayu yang digunakan untuk pembuatan struktur kayu tidak boleh lebih dari 15% untuk struktur yang direkatkan, tidak lebih dari 0% untuk struktur bangunan industri, umum, perumahan dan gudang yang tidak direkatkan, dan tidak lebih dari 5% untuk peternakan. bangunan, struktur luar ruangan dan struktur inventaris bangunan dan struktur sementara. Di sini dan selanjutnya dalam teks, angka dalam tanda kurung siku menunjukkan nomor seri daftar referensi yang diberikan di akhir buku. 4

5 1. ELEMEN EKSTENSI PUSAT Elemen ekstensi pusat dihitung dengan menggunakan rumus dimana N adalah gaya aksial desain; ** luas bersih dari penampang yang dipertimbangkan; N R, (1.1) hal 5 NT; N T b r o s l b luas penampang bruto; osl melemahnya luas penampang; R p adalah perhitungan kuat tarik kayu sepanjang serat, Lampiran 4. Dalam menentukan luas LT, semua pelemahan yang terletak pada bagian sepanjang 0 cm dianggap seolah-olah digabungkan dalam satu bagian. Contoh 1.1. Periksa kekuatan gantungan kayu kasau yang dilemahkan dengan dua takikan h bp = 3,5 cm, potongan samping h st = 1 cm dan lubang baut d = 1,6 cm (Gbr. 1.1). Gaya tarik yang dihitung N = 7700 kgf, diameter log D = 16 cm. Luas penampang bruto batang D 4 = 01 cm Luas ruas pada kedalaman pemotongan h bp = 3,5 cm (Lampiran 1), 1 = 3,5 cm Luas ruas pada kedalaman pemotongan h st = 1 cm = 5,4 cm . Karena antara melemahnya takik dan melemahnya lubang Gambar. 1. Elemen tarik Di sini dan dalam semua rumus selanjutnya, kecuali ada reservasi, faktor gaya dinyatakan dalam kgf, dan karakteristik geometris dalam cm

6 untuk jarak baut 8 cm< 0 см, то условно считаем эти ослабления совмещенными в одном сечении. Площадь ослабления отверстием для болта осл = d (D h ст) = 1,6 (1,6 1) =,4 см. Площадь сечения стержня нетто за вычетом всех ослаблений нт = бр осл = 01 3,5 5,4,4 = 103 см. Напряжение растяжения по формуле (1.1) кгс/см ЦЕНТРАЛЬНОСЖАТЫЕ ЭЛЕМЕНТЫ Центральносжатые деревянные стержни в расчетном отношении можно разделить на три группы: стержни малой гибкости (λ < 30), стержни средней гибкости (λ = 30 70) и стержни большой гибкости (λ >70). Batang dengan fleksibilitas rendah dihitung hanya kekuatannya menurut rumus N R. (1.) c Batang dengan fleksibilitas tinggi dihitung hanya stabilitasnya menurut rumus HT N r a s h R s. (1.3) Batang dengan kelenturan sedang dengan pelemahan harus dihitung kekuatannya menurut rumus (1.) dan stabilitas menurut rumus (1.3). Luas perhitungan (perhitungan) batang untuk menghitung stabilitas tanpa adanya pelemahan dan dengan pelemahan yang tidak meluas sampai ke tepinya (Gbr. a), jika luas pelemahan tidak melebihi 0,5 br, diambil sama dengan 6

7 dihitung = 6p, dimana 6p adalah luas penampang bruto; untuk pelemahan yang tidak sampai ke tepi, apabila luas pelemahan melebihi 0,5 6p maka perhitungannya diambil sebesar 4/3 NT; dengan pelemahan simetris memanjang ke tepi (Gbr. b), perhitungan = NT. Koefisien lentur memanjang ditentukan tergantung pada fleksibilitas elemen yang dihitung dengan menggunakan rumus: dengan fleksibilitas elemen λ 70 1 a 100 ; (1.4) dengan kelenturan elemen λ > 70 Gambar. Melemahnya elemen tekan: a) tidak memanjang ke tepi; b) menghadap tepi A, (1,5) dimana: koefisien a = 0,8 untuk kayu dan a = 1 untuk kayu lapis; koefisien A = 3000 untuk kayu dan A = 500 untuk kayu lapis. Nilai koefisien yang dihitung menggunakan rumus ini diberikan dalam Lampiran. Fleksibilitas λ batang padat ditentukan dengan rumus l 0, (1.6) dimana l 0 adalah panjang desain elemen. Untuk menentukan panjang desain elemen lurus yang dibebani gaya longitudinal di ujungnya, koefisien μ 0 harus diambil sama: dengan ujung berengsel, serta dengan sambungan berengsel pada titik tengah elemen 1 (Gbr. 3.1); r 7

8 dengan satu ujung berengsel dan ujung lainnya terjepit 0,8 (Gbr. 3.); dengan satu ujung terjepit dan ujung lainnya bebas beban (Gbr. 3.3); dengan kedua ujungnya terjepit 0,65 (Gbr. 3.4). r jari-jari inersia penampang elemen. Beras. 3 Skema pengikatan ujung-ujung batang Jari-jari inersia r pada umumnya ditentukan dengan rumus r J br, (1.7) br dimana J br dan 6p momen inersia dan luas penampang bruto elemen. Untuk bagian persegi panjang dengan dimensi sisi b dan h r x = 0,9 h; r kamu = 0,9b. Untuk penampang lingkaran (1.7a) r D 0.5 D. (1.7b) 4 8

9 Fleksibilitas desain elemen tekan tidak boleh melebihi nilai batas berikut: untuk elemen tekan utama tali busur, penyangga penyangga dan tiang penyangga rangka, kolom 10; untuk elemen tekan sekunder, tiang perantara dan penyangga rangka, dll. 150; untuk elemen penghubung 00. Pemilihan bagian batang fleksibel tekan terpusat dilakukan dengan urutan sebagai berikut: a) ditentukan oleh kelenturan batang (untuk elemen utama λ =; untuk elemen sekunder λ =) dan carilah nilai koefisien yang sesuai; b) menentukan radius girasi yang diperlukan dan mengatur ukuran penampang yang lebih kecil; c) menentukan luas yang dibutuhkan dan mengatur ukuran penampang kedua; d) periksa penampang yang diterima menggunakan rumus (1.3). Elemen tekan yang terbuat dari kayu gelondongan dengan tetap mempertahankan konisitasnya dihitung menggunakan bagian di tengah panjang batang. Diameter batang kayu pada bagian desain ditentukan dengan rumus D dihitung = D 0 +0,008 x, (1,8) dimana D 0 adalah diameter batang kayu pada ujung tipis; x adalah jarak dari ujung tipis ke bagian yang ditinjau. Contoh 1. Periksa kekuatan dan stabilitas batang tekan yang dilemahkan di tengah panjangnya dengan dua lubang untuk baut d = 16 mm (Gbr. 4, a). Penampang batang b x h = 13 x 18 cm, panjang l = 0,5 m, ujung-ujungnya berengsel. Beban desain N = kgf. Larutan. Perkiraan panjang bebas batang l 0 = l =.5 m Jari-jari girasi minimum bagian r = 0,9 b = 0,9 13 = 3,76 cm 9

10 Gambar. 4. Elemen terkompresi terpusat Fleksibilitas terbesar, 7 6 Oleh karena itu, batang harus dirancang untuk kekuatan dan stabilitas. Luas bersih batang nt = br osl = 0,6 13 = 19,4 cm. Tegangan tekan menurut rumus (1.) k g / s m

11 Koefisien tekuk menurut rumus (1.4) 6 6, 6 1 0, 8 0, Daerah pelemahannya dari luas kotor sekitar sl br 1,8 5% Oleh karena itu, luas yang dihitung dalam hal ini hitung = br = = 34 cm Tegangan saat menghitung kestabilan menurut rumus (1.3) sampai g s / s m R c 0, Contoh 1.3. Pilih penampang rak balok kayu (Gbr. 4, b) dengan data sebagai berikut: gaya tekan desain N = kgf; panjang dudukan l = 3,4 m, ujung-ujungnya berengsel. Larutan. Fleksibilitas rak kita atur menjadi λ = 80. Koefisien yang sesuai dengan fleksibilitas ini adalah = 0,48 (Lampiran). Temukan radius girasi minimum yang diperlukan (pada λ = 80) l l 1 l cm; 0 0 r tr l, 5 cm 80 dan luas penampang rak yang dibutuhkan (pada φ = 0,48) tr N cm R 0, c Maka lebar penampang balok yang dibutuhkan sesuai rumus (1.7a ) b tr rtr 4, 5 1 4, 7 cm 0, 9 0, 9 Sesuai dengan jenis kayu, kami menerima b = 15 cm. sebelas

12 jam tr tr 7 1 8,1 cm b 15 Kami menerima tinggi = 18 cm; = = 70 cm Fleksibilitas batang dari penampang yang diterima Tegangan l, 5 y r 0, min; kamu = 0,5. N k g s / s m 0, Contoh 1.4. Sebuah tiang kayu berpenampang bulat, dengan tetap mempertahankan kemiringan alaminya, memikul beban N = (Gbr. 4, c). Ujung dudukannya berengsel. Tentukan diameter rak jika tingginya l = 4 m. Kami menetapkan fleksibilitas = 80 dan menemukan koefisien yang sesuai dengan fleksibilitas ini = 0,48 (Lampiran). Kami menentukan radius girasi yang diperlukan dan diameter penampang yang sesuai: r tr l 400 r 0 tr 5 cm; D " 0 cm tr 80 0,5 Kita tentukan luas yang dibutuhkan dan diameter penampang yang sesuai: maka tr N cm R 0, D "" tr Rata-rata diameter yang dibutuhkan c; tr 4 tr, 9 cm 3,1 4 D tr D " D " 1 9.4 5cmD;

13 Kita ambil diameter batang kayu pada ujung tipis D 0 = 18 cm. Maka diameter pada bagian desain yang terletak di tengah panjang elemen ditentukan dengan rumus (1.8): D = , = 19,6 cm; D 3, 6 30 cm. 4 4 Memeriksa penampang yang diterima, 5 1 9, 6 ; 0, 4 6 ; k g s / s m 0, UNSUR-UNSUR PEMBENTUKAN Elemen struktur kayu yang bekerja secara lentur (balok) diperhitungkan kekuatan dan lendutannya. Perhitungan kekuatan dilakukan dengan menggunakan rumus M R, (1.9) u W dimana M adalah momen lentur dari beban rencana; W HT momen hambatan bersih dari bagian yang ditinjau; R u adalah ketahanan kayu terhadap lentur yang dihitung. Lendutan elemen lentur dihitung dari aksi beban standar. Nilai defleksi tidak boleh melebihi nilai berikut: untuk balok antar lantai 1/50 l; untuk balok lantai loteng, purlins dan kasau 1/00 ​​l; untuk pembubutan dan lantai 1/150 l, dimana l adalah bentang desain balok. Nilai momen lentur dan lendutan balok dihitung dengan menggunakan rumus umum mekanika struktural. Untuk balok pada dua tumpuan yang dibebani dengan beban terdistribusi merata, momen dan defleksi relatif dihitung dengan menggunakan rumus: HT 13

14ql 8M; (1.10) f 5 q l l H 3. (1.11) 384EJ Bentang rencana diambil sama dengan jarak antara pusat tumpuan balok. Jika lebar penyangga balok adalah perhitungan awal tidak diketahui, maka bentang rencana balok diambil bentang bersih l 0, ditambah 5%, yaitu l = 1,05 l 0. Saat menghitung elemen yang terbuat dari kayu bulat atau kayu gelondongan yang digergaji menjadi satu, dua atau empat tepinya, pertimbangkan kemiringan alaminya (konisitas). Dengan beban yang terdistribusi merata, perhitungan dilakukan sepanjang bagian di tengah bentang. Contoh 1.5. Rancang dan hitung lantai loteng menggunakan balok kayu yang terletak pada jarak B = 1 m satu sama lain. Lebar ruangan (bentang bersih) l 0 = 5 m. Kami menerima desain lantai ini (Gbr. 5, a). Palang tengkorak dipaku pada balok kayu l, bertumpu pada dinding bangunan, di atasnya diletakkan papan gelinding 3, terdiri dari lantai papan padat dan empat palang yang dilingkari di atasnya (Gbr. 5, b). Plester gipsum kering 4, dilapisi bagian dalam dengan bitumen, dipaku pada batang bevel dari bawah. Di atas lantai papan, pertama-tama diletakkan penghalang uap 5 dalam bentuk lapisan tanah liat yang diresapi setebal cm, dan kemudian insulasi 6 diperluas dengan perlit, vermikulit atau bahan timbunan tahan api lainnya, dibuat dari bahan baku lokal dan memiliki kepadatan. (massa volumetrik) γ = kg/m 3. Lapisan insulasi setebal 1 cm. Lapisan kerak pasir kapur pelindung setebal 7 cm diletakkan di atas insulasi. Kami menentukan beban per 1 m lantai (Tabel 1.1). 14

15 Gambar. 5. Untuk perhitungan balok lantai loteng Tabel 1.1 Elemen dan perhitungan beban Kerak pasir kapur, 0, Insulasi, 0,1 350 Pelumas tanah liat, 0, Papan gelinding (lantai + 50% pada batangan), 0,5 Plester kering dengan aspal, 0 , 5 Total Muatan... Beban standar, kgf/m g, Faktor beban 1, 1, 1, 1.1 1.1 1.4 Beban rencana, kgf/m 38.4 50.4 38.4 15.6 17, Kami tidak memperhitungkan berat sendiri balok, karena beban-beban dari semua elemen lantai lain yang tercantum dalam tabel diasumsikan terdistribusi ke seluruh luas tanpa kecuali luas yang ditempati balok. 15

16 Perhitungan balok lantai. Bila balok dipasang setiap 1 m, beban linier pada balok adalah: standar q H = 11 1 = 11 kgf/m; dihitung q=65 1=65 kgf/m. Bentang rencana balok l = 1,05 l 0 = 1,05 5 = 5,5 m Momen lentur menurut rumus (1.10) M k gf / m. 8 Momen hambatan yang diperlukan balok W tr M cm R dan 130 Diketahui luas penampangnya lebar b = 10 cm, cari h tr 6W tr, 6 cm. b 10 Kita ambil balok dengan penampang bxh = 10 x cm dengan W = 807 cm 3 dan J = 8873 cm 4. Lendutan relatif menurut rumus (1.11 ) f l 3 5, Perhitungan perisai berguling ke depan. Kami menghitung dek panel untuk dua kasus pembebanan: a) beban permanen dan sementara; b) beban desain terpusat pemasangan P = 10 kgf. Dalam kasus pertama, kami menghitung lantai untuk strip selebar 1 m. m strip desain: q H = 11 kgf/m; q = 65 kgf/m. Bentang desain lantai a 4 l B b cm H Di sini B adalah jarak antara sumbu balok; b lebar bagian balok; dan lebar penampang blok kranial.. 16

17 Momen lentur M 6 5 0,8 6 4,5 k gf / m 8 Tebal papan lantai diambil sama dengan = 19 mm. Momen hambatan dan inersia strip desain lantai adalah: W Tegangan lentur J, cm; , cm, kg s / s m. 6 0, Lendutan relatif fl 3 5, Cadangan kekuatan dan kekakuan lantai yang signifikan memungkinkan penggunaan papan setengah bermata kelas III untuk produksinya. Ketika ketebalan lantai dikurangi menjadi 16 mm, defleksinya akan lebih dari maksimum. Jika terdapat palang distribusi yang dibatasi dari bawah, beban terpusat diasumsikan didistribusikan pada lebar dek 0,5 m. Kami menganggap beban diterapkan di tengah bentang dek. Momen lentur M Pl H k g s / s m. L 5 0 1,1 cm

18 Tegangan lentur, g s / s m, 3 0,1 dimana 1 adalah koefisien yang memperhitungkan durasi singkat beban instalasi. 4. ELEMEN BELUK TARIK DAN ELEMEN BELUK KOMPRESI Elemen pembengkokan tarik dan pembengkokan tekan dipengaruhi oleh gaya aksial dan momen lentur yang bekerja secara simultan akibat pembengkokan melintang batang atau penerapan gaya longitudinal yang eksentrik. Tarik lentur batang dihitung dengan rumus N M R p R. (1.1) p W R H T H T dan Kompresi batang lentur pada bidang lentur dihitung dengan rumus N M R c R W R H T H T u c, (1.13) dimana koefisien memperhitungkan momen tambahan dari gaya longitudinal gaya pada deformasi batang, ditentukan dengan rumus 1 N 3100 R dengan br. Batang lentur terkompresi dengan kekakuan penampang lebih rendah pada bidang tegak lurus terhadap lentur harus diperiksa pada bidang ini untuk stabilitas umum tanpa memperhitungkan momen lentur sesuai rumus (1.3). 18

19 Contoh 1.6. Periksa kekuatan balok dengan penampang 13 x 18 cm (Gbr. 6), diregangkan dengan gaya N = kgf dan dibengkokkan oleh beban terpusat P = 380 kgf, diterapkan di tengah bentang l = 3 m . Penampang batang pada tempat ini dilemahkan dengan dua buah lubang untuk baut d = 16 mm. Beras. 6. Solusi elemen lentur tarik. Momen lentur maksimum M Pl k g s / m 4 4 Luas penampang bersih nt = b (h d) = 13 (18 1,6) = 19,4 cm Momen inersia penampang melemah bh J b d a cm HT 1 1 Momen hambatan W HT J 5750 HT lihat 0,5 jam 9 19

20 Stres menurut rumus (1.1), k g s / s m. Periksa kekuatan dan stabilitas batang lentur terkompresi, yang ujungnya berengsel (Gbr. 7). Dimensi penampang b x h = 13 x 18 cm, panjang batang l = 4 m. Gaya tekan rencana N = 6500 kgf, gaya terpusat rencana diterapkan di tengah panjang batang, P = 400 kgf. Beras. 7. Solusi elemen lentur terkompresi. Mari kita periksa kekuatan batang pada bidang lentur. Momen lentur rencana dari beban transversal M Pl k g s / m. Luas penampang = = 34 cm Momen hambatan penampang W x = bh /6 = 70 cm 3. 0

21 Jari-jari inersia penampang relatif terhadap sumbu X r к = 0,9 h = 0,9 18 = 5, cm Fleksibilitas batang x 5, Koefisien menurut rumus (1.14), Tegangan menurut rumus (1.13) k g s / s m 3 4 0, Mari kita periksa kestabilan batang pada bidang tegak lurus tekukan. Jari-jari inersia penampang terhadap sumbu Y r y = 0,9 b = 0,9 13 = 3,76 cm. Fleksibilitas batang relatif terhadap sumbu Y y 3,7 6 Koefisien tekuk (sebagaimana diterapkan) φ = 0,76. Stres menurut rumus (1.3) kg g s / s m 0,

22 BAB PERHITUNGAN SAMBUNGAN ELEMEN STRUKTUR KAYU 5. SENDI PADA TAK Elemen pada takik disambung terutama dalam bentuk takik frontal dengan satu gigi (Gbr. 8). Takik depan dirancang untuk menghancurkan dan mengelupas berdasarkan kondisi bahwa gaya desain yang bekerja pada sambungan tidak melebihi kapasitas menahan beban desain yang terakhir. Beras. 8. Potongan depan

23 Perhitungan takik bagian depan untuk penghancuran dilakukan sesuai dengan dasar pesawat kerja penghancuran, terletak tegak lurus terhadap sumbu elemen tekan yang berdekatan, terhadap gaya total yang bekerja pada elemen ini. Perhitungan daya dukung sambungan dari kondisi penghancuran ditentukan dengan rumus T R cm cm cm, (.1) dimana luas penghancuran; R cm cm dihitung ketahanan kayu terhadap patah membentuk sudut terhadap arah serat, ditentukan dengan rumus R cm R cm R cm sin R cm 90. (.) Kedalaman takik pada simpul penyangga struktur batang harus tidak lebih dari 1 3 jam, dan pada simpul perantara tidak lebih dari 1 4 jam, di mana h adalah ukuran penampang elemen pada arah pemotongan. Daya dukung desain suatu sambungan berdasarkan kondisi geser ditentukan dengan rumus dimana adalah luas geser; sk av, (.3) s k s k s k T R av R menghitung rata-rata ketahanan kayu terhadap chipping pada area pembelahan sk. Panjang area pemotongan l sk pada potongan bagian depan harus minimal 1,5 jam. Rata-rata ketahanan chipping yang dihitung pada area geser dengan panjang platform tidak lebih dari h dan sepuluh kedalaman penyisipan pada sambungan yang terbuat dari pinus dan cemara diambil sama dengan rata-rata 1 /. R k gf s m Untuk panjang l ck lebih dari h, tahanan geser yang dihitung dikurangi dan diambil sesuai Tabel 1. 3

24 sr l sk h Tabel.1,4,6,8 3 3, 3.33 R, k gf / s msk 1 11.4 10.9 10.4 10 9.5 9. 9 Untuk nilai antara rasio l sk / h nilainya dari resistensi yang dihitung ditentukan dengan interpolasi. Contoh 1. Periksa kapasitas menahan beban unit pendukung rangka, diselesaikan dengan takik depan dengan satu gigi (Gbr. 8, a). Penampang balok bxh = 15 x 0 cm; sudut antar sabuk " "(s dalam 0, 3 7 1; c o s 0, 9 8); kedalaman pemotongan h = 5,5 cm; panjang platform geser l ск = 10 jam рр = 55 cm; gaya tekan yang dihitung pada sabuk atas N c = 8900 kgf. Larutan. Ketahanan kayu terhadap remuk pada suatu sudut dihitung menurut rumus (.) Luas remuk 130 R / 130 k gf s m cm, cm bhv 1 5 5. 5 8 8. 8 cm c o s 0. 9 8 Daya dukung kayu sambungan dari kondisi kuat dukung menurut rumus (.1) T 8 8, N sampai gs. cm Gaya desain yang bekerja pada luas geser, T N N co s hingga gf. Luas geser p c c c c k l b cm c.. 4

25 Rata-rata ketahanan kayu terhadap chipping dihitung pada rasio l sk / jam = 55/0 =0,75 rata-rata 1 0,1 / (lihat Tabel 1). R k gf s m Daya dukung sambungan dari kondisi kekuatan chipping menurut rumus (.3) T sk, k gf. Contoh.. Hitung takik bagian depan unit penyangga rangka rangka segitiga (Gbr. 8, b). Tali busur dibuat dari kayu gelondongan dengan diameter rencana pada titik simpul D = cm. Sudut antara tali busur adalah a = 6 30" (sin a = 0,446; cos a = 0,895). Gaya tekan rencana pada tali busur atas adalah N c = kgf. Solusi. Rancangan ketahanan kayu terhadap benturan pada sudut tertentu cm/(Lampiran 4 cm cm). Dengan menggunakan Lampiran 1, kita menemukan bahwa dengan D = cm, luas terdekat seg = 93,9 cm sesuai dengan kedalaman pemotongan h. bp = 6,5 cm. Kami menerima h bp = 6,5 cm, yang kurang dari kedalaman pemotongan maksimum, yang dalam hal ini, dengan mempertimbangkan kebutuhan pemotongan log sabuk bawah hingga kedalaman h CT = cm adalah 1 D h st h h 6, 6 7 cm wr Panjang tali potong (lebar bidang geser) pada h wr = 6,5 cm b = 0,1 cm (Lampiran 15

26 Panjang bidang geser yang diperlukan pada av R = 1 kgf/cm: sk l sk N co s , c 3 7.1 cm av br 0.1 1 sk Kita terima l sk = 38 cm, yang lebih dari 1.5 h = 1.5 () = 30 cm Karena panjang bidang geser ternyata kurang dari h = () = 40 cm, cp, maka nilai yang diterima R = 1 kgf/cm sesuai dengan standar. sk Kami menyusun balok penyangga dari pelat dengan diameter cm. Untuk bantalan penyangga kami mengambil pelat yang sama dengan tepi atas cm, yang akan memberikan lebar penyangga b 1 = 1,6 cm (Lampiran 1). Tegangan dukung pada luas kontak antara subbalok dan bantalan penyangga N c sin, 4 k gf / s m 1. 6 cm dimana 4 kgf / cm adalah tahanan dukung yang dihitung R CM90 melintasi serat pada bidang penyangga struktur.., 6. SAMBUNGAN PADA ANJING SILINDRI Perkiraan daya dukung kemampuan satu potong pasak silinder pada sambungan elemen yang terbuat dari kayu pinus dan cemara ketika gaya diarahkan sepanjang serat elemen ditentukan oleh rumus: menurut pembengkokan batang kayu T dan = 180 d + a, tetapi tidak lebih dari 50 d; dengan runtuhnya elemen tengah dengan ketebalan T c = 50 cd; menurut keruntuhan elemen terluar dengan ketebalan a T a = 80 ad. (.4a) (.4b) (.4c) Banyaknya pasak n H yang harus dipasang pada sambungan untuk menyalurkan gaya N diperoleh dari persamaan 6

27 n H N, (.5) dimana T n adalah nilai terkecil dari ketiga nilai daya dukung pasak, dihitung menggunakan rumus (.4); p s jumlah potongan batang kayu. Kapasitas menahan beban pasak T n juga dapat ditentukan dengan menggunakan Lampiran 5. Jarak antara sumbu pasak harus paling sedikit: sepanjang serat s 1 = 7 d; melintasi serat s = 3,5 d dan dari tepi elemen s 3 = 3 d. Kapasitas menahan beban yang dihitung dari pasak silinder T n ketika gaya diarahkan pada sudut a terhadap serat elemen ditentukan sebagai yang lebih kecil dari ketiganya menurut rumus: H nt (1 8 0), tetapi tidak lebih dari T k d a c H T c = k α 50 cd; T a = k α 80 cd. k 50d ; (.6a) (.6b) (.6c) Sudut α dan derajat Tabel. Koefisien k a untuk pasak baja dengan diameter dalam mm 1, 1,4 1,6 1,8, 0,95 0,95 0,9 0,9 0,9 0,9 0,75 0,75 0,7 0,675 0, 65 0,65 0,7 0,65 0,6 0,575 0,55 0,55 Catatan. Nilai koefisien ka untuk sudut tengah ditentukan dengan interpolasi. Contoh 3. Sambungan sabuk tarik bawah dari rangka rangka (Gbr. 9, a) dibuat menggunakan lapisan papan yang dihubungkan ke sabuk dengan pasak yang terbuat dari baja bulat. Sabuk terbuat dari kayu gelondongan dengan diameter sambungan 19 cm, untuk memastikan lapisan luarnya pas, kayu gelondongan tersebut dipahat pada kedua sisinya sebesar 3 cm dengan ketebalan c = 13 cm dengan penampang a x h = 6 x 18 cm. Gaya tarik rencana N = kgf. Hitung koneksinya. 7

28 Gambar. 9. Sambungan pada pasak silinder baja Solusi. Diameter pasak diatur kira-kira sama dengan (0,0,5) a, di mana a adalah ketebalan lapisan. Kami menerima d = 1,6 cm. Kami menentukan perhitungan daya dukung pasak per bagian menggunakan rumus (.4): H , ; T k gs k gs T c T a , k gs; , kepada Ny. 8

29 Kapasitas menahan beban terkecil yang dihitung Tn = 533 kgf. Pasak berpotongan ganda. Jumlah pasak yang diperlukan menurut rumus (.5): n H , 9 pcs Kami menerima 1 pasak, 4 di antaranya adalah baut di setiap sisi sambungan. Kami menempatkan pasak dalam dua baris memanjang. Jarak antar pasak sepanjang ijuk: s 1 = 7 d 7 1, 6 = 11, cm (asumsi 1 cm). Jarak sumbu pasak ke tepi pelapis adalah s 3 = 3 d 3 1, 6 = 4,8 cm (dengan asumsi 5 cm). Jarak antara pasak melintasi serat adalah s h s = 8 cm > 3,5 d = 5,6 cm 3 Luas penampang bersih sabuk dikurangi jahitan samping dan dilemahkan dengan lubang untuk pasak. H 8 4 8, 8 1,. seg d c cm HT 4 Melemahnya luas penampang lapisan HT () 6 (1 8 1, 6) 1 7 7, 6. a h d cm Tegangan tarik pada lapisan N, k gf / s m 7, 6 Contoh.4. Pada palang kasau miring (Gbr. 9, b) terjadi gaya tarik sebesar N = 500 kgf. Palang terbuat dari dua buah pelat dengan diameter Dpl = 18 cm. Pelat tersebut menutupi kaki kasau yang terbuat dari kayu gelondongan D = cm pada kedua sisinya dan diikat dengan dua baut d = 18 mm, berfungsi sebagai pasak potong ganda. Kedalaman penggilingan 9

30 kaki kasau pada sambungan palang h"ST = 3 cm. Untuk mengencangkan ring baut, pelat dipahat sedalam h ST = cm. Sudut antara arah palang dan arah palang kaki kasau adalah a = 30. Periksa kekuatan sambungan Solusi. Kapasitas menahan beban pasak silinder baja per potong dengan arah gaya membentuk sudut terhadap serat ditentukan dengan rumus (.6): H. 0, 9 (, 8 7) , ; 9 koefisien k a, ditentukan dari tabel; c = D h st = 3 = 16 cm tebal elemen tengah; elemen terluar T n =.647 kgf.Total daya dukung sambungan p n p s T n = == 588 > 500 kgf. Jarak dari sumbu pasak ke ujung palang diambil s 1 = 13 cm > 7 1, 8 = 1,6 cm Jarak antara sumbu pasak menyilang sumbu palang kita ambil s = 6 cm dan menyilang sumbu kaki kasau. Kemampuan suatu bahan untuk menahan pengaruh gaya luar disebut sifat mekanik. KE peralatan mekanis kayu meliputi: kekuatan, elastisitas, keuletan dan kekerasan. Kekuatan kayu ditandai dengan kemampuannya menahan gaya luar (beban). tigapuluh

31 Gaya yang melawan pengaruh luar (beban) disebut kekuatan internal atau stres. Dengan demikian, pada bagian struktur kayu timbul tegangan tekan, tarik, tekuk, geser (penghancuran) atau pecah. Metode yang dipertimbangkan untuk menghitung struktur kayu difokuskan pada spesies yang khas struktur yang dipelajari dalam disiplin “Struktur Teknik Kehutanan”. . Penting untuk merancang struktur kayu sesuai dengan SNiP dan GOST. 31

32 Aplikasi 3

33 Diameter dalam cm Indikator B B B B B B B B B B B B B B B B B B B B 4,8 1,6 5 1,68 5,3 1,75 5,37 1,8 5,57 1,87 5,76 1,93 5,91 1,98 6,08, 04 6.5.09 6.4.14 6.55, 6.7. 4 6.85.3 Dimensi tali busur b dalam cm dan luas ruas dalam cm Pemotongan kedalaman 0,5 1 1,5.5 3 3,5 4 4,5 5 7,34 7.14.39 7.7.45 7.41.49 7.55.5 7.67.57 6.6 4.5 6.9 4.7 7, 4.88 7.47 5.06 7.8 5.4 8 5.4 8, 0,56 7,94 8,18 8,3 8,65 8,67 8,85 9,0 9, 9,3 9,51 9,6 9,83 9,9 10,1 8,5 5,7 10, 10,4 8,7 5,87 8,9 6 9, 6,17 9,4 6,31 9,6 6,44 9,8 6,58 10,5 10,7 8,91 1,4 9,39 1 .9 9.8 13.6 9.75 17, 10, 17.8 10.7 18.6 10, 14 11 ,1 19.7 10.6 14.5 10.4.1 10.9 3, 11.5 4, 11.6 0 1.5 6.1 10.3 15.4 11.7 15.9 10, 8 11 1.3 16.8 11.1 11.3 11.4 11.5 11.6 11.8 10 6.71 1, 10, 6,85 10,4 6,96 10,6 7 ,1 10,8 7,3 1,4 1,4 1,8. 1 1 16.3 13.6 1.6 17.1.9 17.6 11.9 1 13.6 18.4 1.4 1.5 1.6 1.7 13.6 3.3 10.9 7.5 11.5 8.8 1.1 30.1 1 5.1 1.7 31.4 13.4 13 ,8 8,8 14,3 9,6 14,7 30,4 14 3,9 15,1 31,1 14,3 4,4 15,5 31,9 13,7 5 15,9 3,6 13 ,8 18,8 14,1 19,1 14,4 19,5 1,7 19,9 13,1 13, 15 5,5 16, 33,4 13, 3,5 13,7 33,7 14, 34,8 14,7 35,9 15, 36,9 15,6 37 ,9 15,1 38,9 16,5 39,9 16,9 40,9 17,3 41,8 15,3 6 16, 7 4,6 15,7 6,6 16 1,7 16,3 7,6 15 0,4 16,6 8,7 18,1 43,6 17,3 35,4 17,7 36,1 18, 5 44,4 18,9 45,8 19,3 46,3 11,4 1,4 40,7 1,7 36,6 13,3 3 7,8 13,9 39,3 14,4 40,5 43 ,7 13,1 4,8 13,8 44,7 14,4 46,6 49,7 16.51.4 16,7 5,9 16,54, 17.7 55.9 17.4 48.4 17.9 49.5 18.3 50.7 18.8 51.8 19.5.9 18.57.4 18.7 58.8 19.60.1 19.7 61.4 0.1 6, 7 Lampiran 1 14.1 51.5 14.8 53,7 15,5 55,7 16,1 57,7 16,7 59,6 17,3 61,4 17,9 63, 18,4 64,6 19,5 68,3 0 69,9 0,5 71,6 54 0,6 64 1,4 74,4 58,1 1 65,5 1,9 76 1,4 66.5.4 77,4 33

34 34 Penyesuaian akhir 1 dalam bagian melingkar untuk kedalaman sisipan yang berbeda h BP dalam cm 5,5 6 6,5 7 7,5 8 8,5 9 9,9 63,6 16,6 65,3 17, 68,1 17,7 76, 8 17,9 70, 18,3 79,3 18,7 88,5 18,5 7,6 19,4 9 1, 19,1 74,3 19,6 84 0,1 93,9 0,6 76, 3 0. 86. 0,7 96,5 1. 107 1. 78. 0,8 88,4 1,3 99 1,8 110. 11,6 13 0,7 80,1 1,4 90,5 1 ,9 101,4 113,9 14 3,81,9 1,9 9.7.7 84.5 94.7 3.130 4.6 14 5.4 167.85 0,4 3 96,7 3,10 4, 171,7 87,1 3,5 98,7 4, 111 4,8 13 5, 188 3, 88,9 19 8,3 06

35 35 Fleksibilitas λ Lampiran Nilai Koefisien φ Koefisien φ 0,99 0,99 0,988 0,986 0,984 0,98 0,98 0,977 0,974 0,968 0,965 0,961 0,958 0,954 0,95 0,946 0,94 0 0,937 0,98 0,93 0,918 0,913 0,907 0,891 0,884 0,87 0,866 0,859 0,85 0,845 0,838 0,831 0,84 0,810 0,8 0,79 0,784 0,776 0,768 0,758 0,749 0,74 0,731 0,71 0J0 0,69 0,68 0, 67 0,66 0,65 0,641 0,63 0,608 0,597 0,585 0,574 0,56 0,55 0 0,535 0,53 0,508 0,484 0,473 0,461 0,45 0,439 0,49 0,419 0,409 0,4 0,383 0,374 0,36 6 0,358 0,351 0,344 0,336 0,33 0,33 0,304 0,98 0,9 0,87 0,81 0,76 0,71 0,66 0,61

36 36 Penyesuaian akhir Fleksibilitas λ Koefisien φ 0,56 0,5 0,47 0,43 0,39 0,34 0,3 0,6 0, 0,16 0,1 0,08 0,05 0,0 0,198 0,195 0,19 0,189 0,183 0,181 0,178 0,175 73 0,17 0,168 0,165 0,163 0,158 0,156 0,154 0,15 0,15 0,147 0,145 0,144 0,14 0,138 0,136 0,134 0,13 0,13 0,19 0,17 0,16 0,14 0,11 0,1 0,118 0,117 0,115 0,114 0,11 0,111 0,11 0,107 G, 106 0,105 0,104 0,10 0,101 0,1 0,099 0,098 0,096 0,095 0,093 0,0 9 0,091 0,09 0,089 0,086 0,085 0,084 0,083 0,08 0,081 0,081 0,08 0,079 0,078

37 Lampiran 3 Data perhitungan Tinggi h=k 1 D 1 0.5 Luas penampang =k D 0.785 0.393 Jarak sumbu netral ke serat terluar: z 1 =k 3 D z =k 4 D 0.5 0.5 0.1 0.9 Momen inersia: J x =k 5 D 4 J y =k 6 D 4 0.0491 0.0491 0.0069 0.045 Momen hambatan: W x =k 7 D 3 W y =k 8 D 3 0.098 0.098 0.038 0.0491 Jari-jari girasi maksimum r min =k 9 D 0.5 0,13 37

38 AKHIR ADJ.971 0,933 0,943 0,866 0,393 0,779 0,763 0,773 0,740 0,5 0,475 0,447 0,471 0,433 0,5.496 0,471 0,433 0,045 0,045 0,476 0,481 0,471 0,471 0,471 0,471 0,471 0,47. 491 0,0960 0,0908 0,0978 0,091 0,038 0,0981 0,0976 0,0980 0,097 0,13 0,47 0,41 0,44 0,031 38

39 Karakteristik desain bahan Lampiran 4 Keadaan tegangan dan karakteristik elemen Penunjukan Resistensi desain MPa leniya, untuk kayu bergradasi kgf/cm Pembengkokan, kompresi dan penghancuran serat: a) elemen penampang persegi panjang (kecuali yang ditentukan dalam sub-paragraf “b ” dan “c”) dengan tinggi sampai dengan 50 cm b) elemen penampang persegi panjang dengan lebar lebih dari 11 sampai 13 cm dengan tinggi bagian lebih dari 11 sampai 50 cm c) elemen penampang persegi panjang dengan lebar lebih dari 13 cm dengan tinggi bagian lebih dari 13 sd 50 cm d) elemen terbuat dari kayu bulat tanpa sisipan pada desain bagian. Ketegangan sepanjang serat: a) elemen yang tidak direkatkan b) elemen yang direkatkan 3. Kompresi dan penghancuran seluruh area melintasi serat 4. Penghancuran lokal pada serat: a) pada bagian pendukung struktur, sambungan frontal dan nodal elemen b) di bawah mesin cuci pada sudut penghancuran 90 hingga Pemotongan sepanjang serat: a) saat menekuk elemen yang tidak direkatkan b) saat menekuk elemen yang direkatkan c) pada pemotongan bagian depan untuk tegangan maksimum R dan, R c, R cm R dan, R c , R cm R dan, R c, R cm R i, R c, R cm R p R p R c.90, R cm.90 R cm.90 R cm.90 R ck R ck R ck.8 18 1.6 16,6 16 1,5 15,6 16 1,5 15,1 1 39

40 Keadaan tegangan dan karakteristik elemen Karakteristik desain bahan Penunjukan Akhir adj. 4 Resistansi yang dihitung MPa leniya, untuk kayu bergradasi kgf/cm 1 3 d) lokal pada sambungan perekat untuk tegangan maksimum 6. Pengikisan pada serat: a) pada sambungan elemen yang tidak direkatkan b) pada sambungan elemen yang direkatkan 7. Ketegangan melintang serat elemen kayu laminasi R ск R ск.90 R ск.90 R hal.90.7 7 0.35 3.5.1 1 0.8 8 0.7 7 0.3 3.1 1 0.6 6 0.6 6 0 ,35 3.5 CATATAN: 1. Perhitungan ketahanan kayu untuk menghancurkan membentuk sudut terhadap arah serat ditentukan dengan rumus R cm R cm 3 1 (1) s dalam R R cm 90. Perhitungan ketahanan kayu terhadap serpihan pada sudut arah serat ditentukan dengan rumus R cm sk. R sk 3 1 (1) dosa R R sk.90 sk.. 40

41 Daftar Pustaka 1. SNiP II Struktur kayu. Standar desain.. SNiP IIB. 36. Struktur baja. Standar desain. 3.SNiP II6.74. Beban dan dampak. Standar desain. 4. Ivanin, I.Ya. Contoh desain dan perhitungan struktur kayu [Teks] / I.Ya. Ivanin. M.: Gosstroyizdat, Shishkin, V.E. Struktur terbuat dari kayu dan plastik [Teks] / V.E. Shishkin. M.: Stroyizdat, Struktur teknik kehutanan [Teks]: pedoman pelaksanaan proyek jembatan kayu bagi mahasiswa spesialisasi “Teknik Kehutanan” / A.M. Chuprakov. Ukhta : USTU,

42 Daftar Isi Pendahuluan... 3 Bab 1 Perhitungan elemen struktur kayu Elemen tarik terpusat... 5 Elemen tekan terpusat Elemen tekuk Elemen lentur tarik dan lentur tekan Bab Perhitungan sambungan elemen struktur kayu... 5 Sambungan pada takik... 6 Sambungan pada pasak silinder.. 6 Aplikasi... 3 Daftar Pustaka

43 Publikasi pendidikan Chuprakov A.M. Contoh perhitungan struktur kayu struktur teknik kehutanan Editor Buku Ajar I.A. Korektor Bezrodnykh O.V. Editor Teknis Moisenia L.P. Korovkin Plan 008, posisi 57. Ditandatangani untuk pencetakan. Jenis huruf Times New Roman. Formatnya 60x84 1/16. kertas offset. Sablon. Bersyarat oven l.,5. Uch. ed. aku., 3. Peredaran 150 eksemplar. Pesan 17. Universitas Teknik Negeri Ukhta, Ukhta, st. Pervomaiskaya, 13 Departemen percetakan operasional USTU, Ukhta, st. Oktyabrskaya, 13.


BADAN FEDERAL UNTUK PENDIDIKAN FGOU VPO KAZAN UNIVERSITAS ARSITEKTUR DAN KONSTRUKSI NEGARA Departemen struktur logam dan pengujian struktur PETUNJUK METODOLOGI untuk praktikum

KULIAH 3 Struktur kayu harus dihitung dengan menggunakan metode keadaan batas. Batas negara adalah negara-negara struktur di mana mereka berhenti memenuhi persyaratan operasional.

Perhitungan elemen struktur baja. Rencana. 1. Perhitungan elemen struktur logam berdasarkan keadaan batas. 2. Resistansi standar dan desain baja 3. Perhitungan elemen struktur logam

Kementerian Pendidikan dan Ilmu Pengetahuan Anggaran Negara Federal Federasi Rusia lembaga pendidikan pendidikan yang lebih tinggi"Universitas Arsitektur dan Teknik Sipil Negeri Tomsk"

KULIAH 4 3.4. Elemen yang dikenakan gaya aksial dengan lentur 3.4.1. Elemen lentur tarik dan elemen regangan eksentrik Elemen lentur tarik dan elemen regangan eksentrik bekerja secara bersamaan

Kuliah 9 Rak kayu. Beban yang dirasakan oleh struktur penutup beban datar (balok, lengkungan penutup, rangka batang) disalurkan ke pondasi melalui rak atau kolom. Pada bangunan dengan struktur penahan beban kayu

KULIAH 8 5. Perancangan dan perhitungan elemen DC dari beberapa material KULIAH 8 Perhitungan elemen kayu laminasi dengan kayu lapis dan elemen kayu bertulang harus dilakukan sesuai dengan metode yang diberikan

KEMENTERIAN PENDIDIKAN DAN ILMU PENGETAHUAN FEDERASI RUSIA Institusi Pendidikan Tinggi Negara Federal "Universitas Negeri Pasifik" PERHITUNGAN DAN DESAIN BAJA

KULIAH 10 JENIS SENDI PADA STRUKTUR KAYU. SAMBUNGAN KHUSUS BEHZ Tujuan perkuliahan : mahasiswa akan mengembangkan kompetensi mempelajari metode penyambungan elemen kayu dan prinsip perhitungannya

Keandalan struktur dan pondasi bangunan. Struktur kayu. Ketentuan Pokok Perhitungan STANDAR CMEA ST CMEA 4868-84 DEWAN BANTUAN EKONOMI BERSAMA Keandalan struktur bangunan dan

KEMENTERIAN PENDIDIKAN DAN ILMU PENGETAHUAN WILAYAH SAMARA Lembaga pendidikan anggaran negara pendidikan menengah kejuruan “Togliatti Polytechnic College” (GBOU SPO “TPT”)

Kementerian Pendidikan dan Ilmu Pengetahuan Federasi Rusia Lembaga Pendidikan Anggaran Negara Federal Pendidikan Profesional Tinggi "Arsitektur dan Konstruksi Negara Tomsk

Kementerian Pendidikan dan Ilmu Pengetahuan Federasi Rusia Institut Kehutanan Syktyvkar, cabang dari lembaga pendidikan negara untuk pendidikan profesional tinggi "Negara Bagian St. Petersburg

164 KEMENTERIAN PENDIDIKAN DAN PENGETAHUAN FEDERAL RUSIA LEMBAGA PENDIDIKAN ANGGARAN NEGARA LEMBAGA PENDIDIKAN PROFESIONAL TINGGI “UNVERSITAS TEKNIS NEGARA LIPETSK”

Desain struktur yang dilas Rangka Informasi umum Rangka adalah struktur kisi yang terdiri dari batang-batang lurus individual yang dihubungkan satu sama lain pada titik-titiknya. Rangka bekerja dalam pembengkokan

KERJA PRAKTIS 4 PERHITUNGAN DAN KONSTRUKSI RANGKA TUJUAN : Memahami tata cara perhitungan dan perancangan unit rangka batang yang dibuat dengan sudut yang sama. KEMAMPUAN DAN KETERAMPILAN YANG DIPEROLEH: kemampuan untuk menggunakan

Kementerian Pendidikan dan Ilmu Pengetahuan Federasi Rusia UNIVERSITAS NEGERI YUGRA Fakultas Teknik Jurusan Teknologi dan Struktur Konstruksi MENGGUNAKAN SOFTWARE COMPLEX SAP

1 - Metodologi untuk menentukan daya dukung elemen blok jendela dan fasad. (proyek) - 2 - Perhatian! Pabrik pengolahan memilih desain sistem AGS atas tanggung jawabnya sendiri,

Desain struktur logam. Balok. Balok dan sangkar balok Kopling balok Dek datar baja Pemilihan bagian balok canai Balok canai didesain dari balok atau saluran I

Perhitungan balok 1 Data awal 1.1 Diagram balok Bentang A: 6 m Bentang B: 1 m Bentang C: 1 m Jarak balok: 0,5 m Nama Beban q n1, kg/m2 q n2, kg/m γ f k d q р. , kg/m Konstanta 100 50 1 1 50

BEL O UNIVERSITAS TEKNIS NASIONAL RUSIA FAKULTAS PEMBANGUNAN FAKULTAS ILMU PENGETAHUAN DAN SEMINAR TEKNIS MASALAH TRANSISI KE EROPA

Kementerian Pendidikan dan Ilmu Pengetahuan Federasi Rusia PENELITIAN NASIONAL UNIVERSITAS SIPIL NEGARA MOSKOW Jurusan Struktur Logam dan Kayu PERHITUNGAN STRUKTUR

DAFTAR ISI Pendahuluan.. 9 Bab 1. BEBAN DAN DAMPAK 15 1.1. Klasifikasi beban........ 15 1.2. Kombinasi (kombinasi) beban..... 17 1.3. Penentuan beban rencana.. 18 1.3.1. Permanen

Sekolah Tinggi Konstruksi dan Ekonomi Astrakhan Prosedur untuk menghitung kekuatan pelat inti berongga pratekan untuk spesialisasi 713 "Konstruksi bangunan dan struktur" 1. Tugas desain

Sekolah Tinggi Konstruksi dan Ekonomi Astrakhan Tata cara penghitungan kekuatan balok pratekan (palang) untuk spesialisasi 2713 “Konstruksi bangunan dan struktur” 1. Tugas desain

UDC 624.014.2 Fitur perhitungan unit pendukung lengkungan bentang panjang papan perekat berengsel tiga. Analisis perbandingan solusi konstruktif Krotovich A.A. (Pengawas ilmiah Zgirovsky A.I.) Belorussky

Rangka baja. Rencana. 1. Informasi umum. Jenis gulungan dan dimensi umum. 2. Perhitungan dan desain rangka. 1. Informasi umum. Jenis gulungan dan dimensi umum. Rangka adalah struktur batang

KULIAH 5 Panjang kayu standar hingga 6,5 ​​m, dimensi penampang balok hingga 27,5 cm Saat membuat struktur bangunan, timbul kebutuhan: - untuk menambah panjang elemen (menambah),

SAYA. Gazizov E.S. PERHITUNGAN Sinegubova STRUKTUR BALOK TERLETAK Yekaterinburg 017 KEMENTERIAN PENDIDIKAN RUSIA FSBEI HE "UNVERSITAS KEHUTANAN NEGARA URAL" Departemen Teknologi Inovatif dan

Soal tes kekuatan bahan 1. Prinsip dasar 2. Apa hipotesis, asumsi dan premis utama yang mendasari ilmu kekuatan bahan? 3. Masalah utama apa yang dipecahkannya?

Sekolah Tinggi Konstruksi dan Ekonomi Astrakhan Prosedur untuk menghitung pratekan lempengan berusuk untuk kekuatan untuk spesialisasi 713 “Konstruksi bangunan dan struktur” 1. Tugas desain

KEMENTERIAN PENDIDIKAN DAN ILMU PENGETAHUAN FEDERASI RUSIA Lembaga pendidikan tinggi anggaran negara federal "UNVERSITAS TEKNIS NEGARA ULYANOVSK" V. K. Manzhosov

FITUR PERANCANGAN RANGKA KAYU Sejarah yang luar biasa Fachwerk (Jerman: Fachwerk (struktur rangka, struktur setengah kayu) adalah jenis struktur bangunan yang alas penahan bebannya adalah

TSNIISK IM. V. A. KUCHERENKO PANDUAN PERANCANGAN RANGKA LAS DARI SUDUT TUNGGAL MOSKOW 1977 konstruksi rangka ORDER BANNER MERAH KETENAGAKERJAAN lembaga penelitian pusat

Kementerian Pendidikan Federasi Rusia Universitas Teknik Negeri St. Petersburg DISETUJUI Kepala. Departemen Struktur dan Bahan Bangunan 2001 Belov V.V. Program disiplin

PROGRAM KERJA disiplin ilmu Struktur kayu dan plastik jurusan (kekhususan) 270100.2 “Konstruksi” - sarjana Fakultas Teknik Sipil Bentuk studi penuh waktu Blok disiplin ilmu SD

Perhitungan struktur lantai dan kolom bangunan rangka baja Data awal. Dimensi bangunan dalam denah: 36 mx 24 m, tinggi: 18 m Tempat pembangunan: Chelyabinsk (wilayah salju III, wilayah angin II).

SAYA. Gazizov PERHITUNGAN STRUKTUR BANGUNAN DARI KAYU LAPIS Ekaterinburg 2017 KEMENTERIAN PENDIDIKAN DAN ILMU PENGETAHUAN FEDERAL GBOU KESEHATAN "UNVERSITAS KEHUTANAN NEGARA URAL" Departemen Teknologi Inovatif

DAFTAR ISI 1 PARAMETER DESAIN 4 DESAIN DAN PERHITUNGAN BAGIAN ATAS KOLOM 5 1 Tata Letak 5 Pengecekan kestabilan bidang lentur 8 3 Pengecekan kestabilan bidang lentur 8 3 KONSTRUKSI

Lampiran Kementerian Pertanian Federasi Rusia Lembaga Pendidikan Anggaran Negara Federal Pendidikan Tinggi Universitas Agraria Negeri Saratov dinamai

Penilaian kapasitas menahan beban pasangan bata Dinding pasangan bata adalah elemen penahan beban vertikal suatu bangunan. Berdasarkan hasil pengukuran diperoleh perhitungan dimensi dinding sebagai berikut: tinggi

KERJA PRAKTIS 2 PERHITUNGAN ELEMEN STRUKTUR LOGAM TEREGANG DAN TERTEKAN TUJUAN : Memahami tujuan dan tata cara menghitung elemen struktur logam yang diregangkan dan dikompresi terpusat.

DAFTAR ISI Kata Pengantar... 4 Pendahuluan... 7 Bab 1. Mekanika benda tegar mutlak. Statika... 8 1.1. Ketentuan umum... 8 1.1.1. Model benda yang benar-benar kaku... 9 1.1.2. Gaya dan proyeksi gaya pada sumbu.

4 PERSYARATAN TAMBAHAN UNTUK DESAIN ELEMEN I-TEE DENGAN DINDING BERGELOMBANG 4.. Rekomendasi umum 4.. Pada elemen penampang I yang kompleks untuk meningkatkan daya tahan dan

Snip 2-23-81 struktur baja unduh pdf >>>

Snip 2-23-81 unduhan struktur baja pdf >>> Snip 2-23-81 unduhan struktur baja pdf Snip 2-23-81 unduhan struktur baja pdf Baut kelas akurasi A harus digunakan untuk sambungan di

Snip 2-23-81 unduhan struktur baja pdf >>> Snip 2-23-81 unduhan struktur baja pdf Snip 2-23-81 unduhan struktur baja pdf Baut kelas akurasi A harus digunakan untuk sambungan di

Snip 2-23-81 unduhan struktur baja pdf >>> Snip 2-23-81 unduhan struktur baja pdf Snip 2-23-81 unduhan struktur baja pdf Baut kelas akurasi A harus digunakan untuk sambungan di

Snip 2-23-81 unduhan struktur baja pdf >>> Snip 2-23-81 unduhan struktur baja pdf Snip 2-23-81 unduhan struktur baja pdf Baut kelas akurasi A harus digunakan untuk sambungan di

Kuliah 9 (lanjutan) Contoh penyelesaian kestabilan batang tekan dan permasalahannya keputusan independen Pemilihan penampang batang tekan terpusat dari kondisi kestabilan Contoh 1 Batang diperlihatkan

Laporan 5855-1707-8333-0815 Perhitungan kekuatan dan stabilitas batang baja menurut SNiP II-3-81* Dokumen ini disusun berdasarkan laporan perhitungan yang dilakukan oleh admin pengguna elemen logam

PETUNJUK METODOLOGI 1 TOPIK Pendahuluan. Pengarahan keselamatan. Kontrol masuk. PENGANTAR PELAJARAN PRAKTIS PADA KURSUS MEKANIKA TERAPAN. PETUNJUK KEBAKARAN DAN KESELAMATAN LISTRIK.

Semester 6 Stabilitas umum balok logam Balok logam, tidak diamankan dalam arah tegak lurus atau diamankan dengan lemah, di bawah pengaruh beban mereka dapat kehilangan stabilitas bentuknya. Mari kita pertimbangkan

Halaman 1 dari 15 Uji sertifikasi bidang pendidikan vokasi Keahlian : 170105.65 Sistem sekring dan kendali senjata Disiplin : Mekanik (Kekuatan bahan)

KEMENTERIAN PENDIDIKAN DAN ILMU PENGETAHUAN FEDERASI RUSIA Institusi Pendidikan Tinggi Anggaran Negara Federal "RISET NASIONAL KONSTRUKSI NEGARA MOSKOW

KEMENTERIAN PENDIDIKAN DAN ILMU PENGETAHUAN FEDERASI RUSIA Lembaga pendidikan anggaran negara federal untuk pendidikan profesional tinggi "UNVERSITAS TEKNIK NEGARA ULYANOVSK"

UDC 640 Perbandingan metode untuk menentukan defleksi balok beton bertulang dengan penampang variabel Vrublevsky PS (Pembimbing Ilmiah Shcherbak SB) Universitas Teknik Nasional Belarusia Minsk Belarus V

5. Perhitungan rangka tipe kantilever Untuk memastikan kekakuan spasial, rangka derek putar biasanya dibuat dari dua rangka paralel yang dihubungkan satu sama lain, jika memungkinkan, dengan strip. Lebih sering

1 2 3 ISI PROGRAM KERJA 1. MAKSUD DAN TUJUAN DISIPLIN “STRUKTUR KAYU DAN PLASTIK” SERTA TEMPATNYA DALAM PROSES PENDIDIKAN Disiplin “Struktur Kayu dan Plastik” merupakan salah satu bidang utama

Kementerian Pendidikan dan Ilmu Pengetahuan Federasi Rusia Universitas Negeri Arsitektur dan Teknik Sipil St. Petersburg Fakultas Teknik Sipil Departemen Struktur Logam dan Pengujian Struktur

STANDAR DAN PERATURAN PEMBANGUNAN SNiP II-25-80 Struktur kayu Tanggal pengenalan 01-01-1982 DIKEMBANGKAN OLEH TsNIISK im. Kucherenko dari Komite Pembangunan Negara Uni Soviet dengan partisipasi TsNIIPromzdanii dari Komite Pembangunan Negara Uni Soviet, kompleks dan bangunan TsNIIEP

LEMBAGA PENDIDIKAN TINGGI ANGGARAN NEGARA FEDERAL “UNVERSITAS PERTANIAN NEGARA ORENBURG” Jurusan “Desain dan Manajemen Sistem Teknis” METODOLOGI

Badan Federal untuk Transportasi Kereta Api Universitas Negeri Ural Kereta Api dan Komunikasi Departemen Mekanika Benda Padat yang Dapat Diubah Bentuk, Fondasi dan Fondasi A. A. Lakhtin KONSTRUKSI

Kementerian Pendidikan Federasi Rusia

Universitas Teknik Negeri Yaroslavl

Fakultas Arsitektur dan Konstruksi

contoh perhitungan struktur kayu

tutorialdalam disiplin “Struktur terbuat dari kayu dan plastik”

untuk siswa khusus

290300 “Konstruksi industri dan sipil”

kursus korespondensi

Yaroslavl 2007


UDC 624.15

anggota parlemen ________. Struktur yang terbuat dari kayu dan plastik: Panduan metodologi untuk mahasiswa korespondensi spesialisasi 290300 “Konstruksi industri dan sipil” / Disusun oleh: V.A. Bekenev, D.S. Dekhterev; YAGTU.- Yaroslavl, 2007.- __ hal.

Perhitungan jenis utama struktur kayu diberikan. Dasar-dasar desain dan pembuatan struktur kayu diuraikan, dengan mempertimbangkan persyaratan dokumen peraturan baru. Fitur desain dan dasar-dasar perhitungan struktur kayu solid dan tembus dijelaskan.

Direkomendasikan untuk siswa 3-5 tahun spesialisasi 290300 “Teknik Industri dan Sipil”, kursus paruh waktu, serta spesialisasi lainnya yang mempelajari kursus “Struktur terbuat dari kayu dan plastik”.

sakit. 77. Tabel. 15. Daftar Pustaka 9 judul

Peninjau:

© Negara Bagian Yaroslavl

Universitas Teknik, 2007


PERKENALAN

Saat ini instruksi metodologis dikembangkan sesuai dengan SNiP II-25-80 “Struktur kayu”. Ini memberikan informasi teoritis, serta rekomendasi untuk desain dan perhitungan struktur kayu, yang diperlukan untuk mempersiapkan ujian bagi siswa dari spesialisasi “Teknik Industri dan Sipil”.

Tujuan mempelajari mata kuliah “Struktur yang terbuat dari kayu dan plastik” adalah agar calon spesialis memperoleh pengetahuan di bidang penerapan dalam konstruksi struktur kayu, penggunaan metode perhitungan, desain dan pengendalian kualitas berbagai jenis struktur. , mampu memeriksa kondisi struktur, menghitung dan mengendalikan struktur penutup penahan beban dengan mempertimbangkan teknologi pembuatannya.

1. PERHITUNGAN DAN KONSTRUKSI PELAT ASBESTOS-SEMEN DENGAN RANGKA KAYU

Contoh penghitungan pelat penutup asbes-semen.

Diperlukan untuk merancang pelat atap berinsulasi asbes-semen untuk bangunan pertanian di bawah atap gulung dengan kemiringan 0,1. Melangkah struktur penahan beban Rangkanya 6 m. Bangunan ini terletak di wilayah salju III.

1. Pemilihan solusi desain pelat.

Pelat asbes-semen dengan rangka kayu diproduksi dengan panjang masing-masing 3 - 6 m, lebar 1 - 1,5 m, dimaksudkan untuk gabungan atap tanpa atap, terutama bangunan industri satu lantai dengan atap yang terbuat dari bahan gulungan dengan drainase air eksternal.

Kami menerima lempengan berukuran 1,5x6 m untuk kulit atas dan bawah, kami mengambil 5 lembar masing-masing berukuran 1500x1200 mm. Kami menerima penyatuan lembaran selubung dari ujung ke ujung. Kulit terkompresi bagian atas diatur ke ketebalan δ 1 = 10 mm sebagai beban terberat, bagian bawah diregangkan - tebal δ 2 =8mm. Massa volumetrik lembaran tersebut adalah 1750 kg/m3.

Sebagai pengencang kami menggunakan sekrup baja galvanis dengan diameter D=5 mm dan panjang 40 mm dengan kepala countersunk. Jarak antara sumbunya minimal 30 D(Di mana D- diameter sekrup, baut atau paku keling), tetapi tidak kurang dari 120 mm, dan tidak lebih dari 30 δ (Di mana δ – ketebalan selubung asbes-semen). Jarak dari sumbu sekrup, baut atau paku keling ke tepi selubung asbes-semen minimal harus 4 D dan tidak lebih dari 10 D.

Lebar pelat sepanjang permukaan atas dan bawah diambil 1490 mm dengan jarak antar pelat 10 mm. Pada arah memanjang, jarak antar pelat adalah 20 mm, yang setara dengan panjang struktur pelat 5980 mm. Sambungan memanjang antar pelat dibuat dengan menggunakan balok kayu berbentuk seperempat yang dipaku pada tepi memanjang pelat. Sebelum memasang karpet atap, celah yang terbentuk di antara pelat ditutup dengan bahan insulasi panas (mipora, poroizol, busa polietilen, dll.), dan balok-balok kayu, membentuk sambungan, disambung dengan paku berdiameter 4 mm dengan tinggi nada 300 mm.

Rangka pelat terbuat dari kayu pinus mutu 2 dengan massa jenis 500 kg/m3. Panjang bagian penyangga pelat ditentukan dengan perhitungan, tetapi disediakan minimal 4 cm.

Ketahanan lentur semen asbes dihitung R i.a=16MPa.

Modulus elastisitas kayu dan semen asbes berturut-turut adalah Misalnya=10000 MPa, E a=10000 MPa.

Desain ketahanan semen asbes terhadap kompresi R c.a=22,5 MPa.

Ketahanan lentur semen asbes yang dihitung pada seluruh lembaran dihitung Rberat.A=14 MPa.

Ketahanan lentur kayu pinus dihitung Menyingkirkan.=13 MPa.

Untuk pelat rangka, digunakan insulasi wol mineral atau wol kaca dengan pengikat sintetis, serta bahan insulasi panas lainnya. Dalam hal ini, kami menggunakan papan wol mineral kaku dengan pengikat sintetis sesuai dengan GOST 22950-95 dengan kepadatan 175 kg/m 3. Papan isolasi termal direkatkan ke trim bawah lempengan asbes-semen pada lapisan aspal, yang sekaligus berfungsi sebagai penghalang uap. Ketebalan insulasi diasumsikan secara struktural sama dengan 50 mm.