Ev · Ağlar · Uygun Kesir 1. Düzgün kesir nedir? Doğru ve yanlış kesirler: kurallar

Uygun Kesir 1. Düzgün kesir nedir? Doğru ve yanlış kesirler: kurallar

Tüm bilimlerin kraliçesi olan matematiği incelerken, bir noktada herkes kesirlerle karşılaşır. Bu kavram (kesirlerin türleri veya onlarla yapılan matematiksel işlemler gibi) hiç de karmaşık olmasa da dikkatli bir şekilde ele alınmalıdır, çünkü gerçek hayat Okul dışında çok faydalı olacaktır. Öyleyse kesirler hakkındaki bilgimizi tazeleyelim: Nedirler, ne işe yararlar, türleri nelerdir ve onlarla çeşitli aritmetik işlemler nasıl yapılır.

Majesteleri kesri: nedir bu

Matematikte kesirler, her biri bir birimin bir veya daha fazla bölümünden oluşan sayılardır. Bu tür kesirlere sıradan veya basit de denir. Kural olarak yatay veya eğik çizgiyle ayrılmış iki sayı olarak yazılırlar, buna "kesirli" çizgi denir. Örneğin: ½, ¾.

Bu sayıların büyüğü veya birincisi paydır (sayıdan kaç parça alındığını gösterir), alttaki veya ikincisi ise paydadır (birimin kaç parçaya bölündüğünü gösterir).

Kesir çubuğu aslında bölme işareti olarak işlev görür. Örneğin 7:9=7/9

Geleneksel olarak ortak kesirler birden küçüktür. Ondalık sayılar bundan daha büyük olabilir.

Kesirler ne içindir? Evet, her şey için çünkü gerçek dünyada tüm sayılar tam sayı değildir. Örneğin, kafeteryadaki iki kız öğrenci birlikte lezzetli bir çikolata satın aldı. Tatlıyı paylaşmak üzereyken bir arkadaşlarıyla tanıştılar ve ona da ikram etmeye karar verdiler. Ancak artık çikolatanın 12 kareden oluştuğunu göz önünde bulundurarak doğru şekilde bölmek gerekiyor.

İlk başta kızlar her şeyi eşit olarak bölmek istediler, sonra her biri dört parça alacaktı. Ancak iyice düşündükten sonra arkadaşlarına çikolatanın 1/3'ünü değil 1/4'ünü ikram etmeye karar verdiler. Ve kız öğrenciler kesirleri iyi çalışmadıkları için böyle bir durumda ellerinde ikiye bölünmesi çok zor olan 9 parçanın elde edileceğini hesaba katmadılar. Oldukça basit olan bu örnek, bir sayının bir bölümünü doğru şekilde bulmanın ne kadar önemli olduğunu göstermektedir. Ama hayatta benzer vakalar daha fazla.

Kesir türleri: sıradan ve ondalık

Tüm matematiksel kesirler iki büyük kategoriye ayrılır: sıradan ve ondalık. Bunlardan ilkinin özellikleri önceki paragrafta anlatılmıştı, bu yüzden şimdi ikinciye dikkat etmeye değer.

Ondalık, bir sayının kesirlerinin virgülle ayrılmış olarak, tire veya eğik çizgi olmadan yazılı olarak yazılan konumsal gösterimidir. Örneğin: 0,75, 0,5.

Aslında ondalık kesir sıradan bir kesirle aynıdır, ancak paydası her zaman bir ve ardından sıfır gelir; adı da buradan gelir.

Virgülden önceki sayı bir tamsayı kısmıdır ve ondan sonraki her şey bir kesirdir. Bayıldım basit kesir ondalık sayıya dönüştürülebilir. Yani, önceki örnekte belirtildiği gibi ondalık sayılar her zamanki gibi yazılabilir: ¾ ve ½.

Hem ondalık hem de sıradan kesirlerin pozitif veya negatif olabileceğini belirtmekte fayda var. Başlarında “-” işareti varsa bu kesir negatif, “+” ise pozitif kesirdir.

Sıradan kesirlerin alt türleri

Bu tür basit kesirler vardır.

Ondalık kesrin alt türleri

Basit bir kesirden farklı olarak ondalık kesir yalnızca 2 türe ayrılır.

  • Son - virgülden sonra sınırlı (sonlu) sayıda basamağa sahip olması nedeniyle bu adı almıştır: 19.25.
  • Sonsuz kesir, virgülden sonra sonsuz sayıda basamak içeren bir sayıdır. Örneğin 10'u 3'e böldüğümüzde sonuç 3,333 gibi sonsuz bir kesir olacaktır...

Kesirleri Ekleme

Kesirlerle çeşitli aritmetik işlemler yapmak sıradan sayılardan biraz daha zordur. Ancak temel kuralları anlarsanız onlarla herhangi bir örneği çözmek zor olmayacaktır.

Örneğin: 2/3+3/4. Bunların en küçük ortak katı 12 olacağından her paydada bu sayının olması gerekir. Bunu yapmak için ilk kesrin payını ve paydasını 4 ile çarpıyoruz, 8/12 çıkıyor, ikinci terim için de aynısını yapıyoruz ama sadece 3 - 9/12 ile çarpıyoruz. Artık örneği kolaylıkla çözebilirsiniz: 8/12+9/12= 17/12. Ortaya çıkan kesir yanlış bir değerdir çünkü pay paydadan büyüktür. 17:12 = 1 ve 5/12'ye bölünerek doğru karışıma dönüştürülebilir ve dönüştürülmelidir.

Karışık kesirler eklenirken önce tam sayılarla, sonra kesirlerle işlemler yapılır.

Örnek bir ondalık kesir ve sıradan bir kesir içeriyorsa, her ikisini de basit hale getirmek, sonra bunları aynı paydaya getirip eklemek gerekir. Örneğin 3,1+1/2. 3.1 sayısı şu şekilde yazılabilir: karışık fraksiyon 3 ve 1/10 veya yanlış - 31/10. Terimlerin ortak paydası 10 olacaktır, yani 1/2'nin payını ve paydasını dönüşümlü olarak 5 ile çarpmanız gerekir, 5/10 elde edersiniz. O zaman her şeyi kolaylıkla hesaplayabilirsiniz: 31/10+5/10=35/10. Elde edilen sonuç uygunsuz indirgenebilir bir kesirdir, onu 5: 7/2 = 3 ve 1/2 veya ondalık - 3,5 oranında azaltarak normal forma getiriyoruz.

2 ondalık kesir eklerken virgülden sonra aynı sayıda rakamın olması önemlidir. Durum böyle değilse, eklemeniz yeterlidir Gerekli miktar sıfırlar, çünkü ondalık kesirlerde bu ağrısız bir şekilde yapılabilir. Örneğin, 3,5+3,005. Bu sorunu çözmek için ilk sayıya 2 sıfır ekleyip ardından birer birer eklemeniz gerekir: 3.500+3.005=3.505.

Kesirlerde Çıkarma

Kesirleri çıkarırken, eklerken yaptığınızın aynısını yapmalısınız: ortak bir paydaya azaltın, bir payı diğerinden çıkarın ve gerekirse sonucu karışık kesire dönüştürün.

Örneğin: 16/20-5/10. Ortak payda 20 olacaktır. İkinci kesri bu paydaya getirmeniz gerekiyor, onun her iki parçasını da 2 ile çarparak 10/20 elde edersiniz. Artık örneği çözebilirsiniz: 16/20-10/20= 6/20. Ancak bu sonuç indirgenebilir kesirler için geçerli olduğundan her iki tarafı da 2'ye bölmek gerekir ve sonuç 3/10 olur.

Kesirlerin Çarpılması

Kesirleri bölme ve çarpma, toplama ve çıkarmaya göre çok daha basit işlemlerdir. Gerçek şu ki, bu görevleri yerine getirirken ortak bir payda aramaya gerek yok.

Kesirleri çarpmak için her iki payı da birer birer çarpmanız ve ardından her iki paydayı da çarpmanız yeterlidir. Kesir indirgenebilir bir miktar ise, ortaya çıkan sonucu azaltın.

Örneğin: 4/9x5/8. Alternatif çarpma işleminden sonra sonuç 4x5/9x8=20/72 olur. Bu kesir 4'e kadar azaltılabilir, dolayısıyla örnekteki son cevap 5/18'dir.

Kesirler nasıl bölünür

Kesirleri bölmek de basit bir işlemdir; aslında mesele onları çarpmaktır. Bir kesri diğerine bölmek için ikinciyi ters çevirip birinciyle çarpmanız gerekir.

Örneğin 5/19 ve 5/7 kesirlerini bölmek. Örneği çözmek için ikinci kesrin paydasını ve payını değiştirip çarpmanız gerekir: 5/19x7/5=35/95. Sonuç 5 azaltılabilir - 7/19 çıkıyor.

Bir kesri asal sayıya bölmeniz gerekiyorsa teknik biraz farklıdır. Başlangıçta bu sayıyı uygunsuz bir kesir olarak yazmalı ve ardından aynı şemaya göre bölmelisiniz. Örneğin 2/13:5 2/13:5/1 şeklinde yazılmalıdır. Şimdi 5/1'i çevirip elde edilen kesirleri çarpmanız gerekiyor: 2/13x1/5= 2/65.

Bazen karışık kesirleri bölmeniz gerekir. Onlara tam sayılarda olduğu gibi davranmalısınız: onları bileşik kesirlere dönüştürün, böleni ters çevirin ve her şeyi çarpın. Örneğin, 8 ½: 3. Her şeyi bileşik kesirlere dönüştürün: 17/2: 3/1. Bunu 3/1 çevirme ve çarpma takip eder: 17/2x1/3= 17/6. Şimdi uygunsuz kesri doğru olana - 2 tam ve 5/6 - dönüştürmeniz gerekiyor.

Yani kesirlerin ne olduğunu ve onlarla çeşitli aritmetik işlemleri nasıl gerçekleştirebileceğinizi anladıktan sonra, bunu unutmamaya çalışmalısınız. Sonuçta, insanlar her zaman bir şeyi eklemek yerine parçalara ayırmaya daha eğilimlidirler, bu nedenle bunu doğru şekilde yapabilmeniz gerekir.

Uygun kesir

Çeyrekler

  1. Düzenlilik. A Ve B Aralarındaki üç ilişkiden yalnızca birini benzersiz şekilde tanımlamanıza olanak tanıyan bir kural vardır: "< », « >" veya " = ". Bu kurala denir sıralama kuralı ve şu şekilde formüle edilir: negatif olmayan iki sayı ve iki tam sayı ve ile aynı ilişkiyle ilişkilidir; pozitif olmayan iki sayı A Ve B negatif olmayan iki sayı ile aynı ilişkiyle ilişkilidir ve ; eğer aniden A olumsuz değil ama B- o zaman negatif A > B. src="/pictures/wiki/files/57/94586b8b651318d46a00db5413cf6c15.png" border="0">

    Kesirleri Ekleme

  2. Ekleme işlemi. Herhangi bir rasyonel sayı için A Ve B sözde var toplama kuralı C. Aynı zamanda sayının kendisi C isminde miktar sayılar A Ve B ve ile gösterilir ve böyle bir sayıyı bulma işlemine denir toplam. Toplama kuralı vardır sonraki görünüm: .
  3. Çarpma işlemi. Herhangi bir rasyonel sayı için A Ve B sözde var çarpma kuralı onlara bazı rasyonel sayılar atar C. Aynı zamanda sayının kendisi C isminde sayılar A Ve B ve ile gösterilir ve böyle bir sayıyı bulma işlemine de denir çarpma işlemi. Çarpma kuralı şuna benzer: .
  4. Sıra ilişkisinin geçişliliği. Herhangi bir rasyonel sayı üçlüsü için A , B Ve C Eğer A az B Ve B az C, O A az C, ve eğer A eşittir B Ve B eşittir C, O A eşittir C. 6435">Toplamanın değişmezliği. Rasyonel terimlerin yerlerinin değiştirilmesi toplamı değiştirmez.
  5. Eklemenin ilişkilendirilebilirliği.Üç rasyonel sayının toplanma sırası sonucu etkilemez.
  6. Sıfır varlığı. Toplandığında diğer tüm rasyonel sayıları koruyan bir rasyonel sayı 0 vardır.
  7. Zıt sayıların varlığı. Herhangi bir rasyonel sayının, kendisine eklendiğinde 0 veren zıt bir rasyonel sayı vardır.
  8. Çarpmanın değişme özelliği. Rasyonel faktörlerin yerlerinin değiştirilmesi ürünü değiştirmez.
  9. Çarpmanın ilişkilendirilebilirliği.Üç rasyonel sayının çarpılma sırası sonucu etkilemez.
  10. Birimin kullanılabilirliği.Çarpıldığında diğer tüm rasyonel sayıları koruyan bir rasyonel sayı 1 vardır.
  11. Karşılıklı sayıların varlığı. Herhangi bir rasyonel sayının, ile çarpıldığında 1 veren bir ters rasyonel sayısı vardır.
  12. Çarpmanın toplamaya göre dağılımı.Çarpma işlemi, dağıtım yasası aracılığıyla toplama işlemiyle koordine edilir:
  13. Sıra ilişkisinin toplama işlemiyle bağlantısı. Sola ve Sağ Taraf Rasyonel bir eşitsizlik için aynı rasyonel sayıyı ekleyebilirsiniz. /pictures/wiki/files/51/358b88fcdff63378040f8d9ab9ba5048.png" border="0">
  14. Arşimet Aksiyomu. Rasyonel sayı ne olursa olsun A, toplamları aşacak kadar çok birim alabilirsiniz A. src="/pictures/wiki/files/55/70c78823302483b6901ad39f68949086.png" border="0">

Ek özellikler

Rasyonel sayıların doğasında bulunan diğer tüm özellikler temel özellikler olarak ayırt edilmez, çünkü genel olarak konuşursak, bunlar artık doğrudan tam sayıların özelliklerine dayanmaz, ancak verilen temel özelliklere dayanarak veya doğrudan bazı matematiksel nesnelerin tanımıyla kanıtlanabilirler. . Bunun gibi pek çok ek özellik var. Bunlardan sadece birkaçını burada listelemek anlamlı olacaktır.

Src="/pictures/wiki/files/48/0caf9ffdbc8d6264bc14397db34e8d72.png" border="0">

Bir kümenin sayılabilirliği

Rasyonel sayıların numaralandırılması

Rasyonel sayıların sayısını tahmin etmek için kümelerinin önem derecesini bulmanız gerekir. Rasyonel sayılar kümesinin sayılabilir olduğunu kanıtlamak kolaydır. Bunu yapmak için rasyonel sayıları sıralayan, yani rasyonel ve doğal sayılar kümeleri arasında bir eşleştirme kuran bir algoritma vermek yeterlidir.

Bu algoritmaların en basiti şuna benzer. Sonsuz bir tablo oluşturulur sıradan kesirler, her birinde Ben her birinde -inci satır J kesrin bulunduğu inci sütun. Kesinlik açısından bu tablonun satır ve sütunlarının birden başlayarak numaralandırıldığı varsayılmaktadır. Tablo hücreleri ile gösterilir; burada Ben- hücrenin bulunduğu tablo satırının numarası ve J- sütun numarası.

Ortaya çıkan tablo, aşağıdaki resmi algoritmaya göre bir "yılan" kullanılarak geçilir.

Bu kurallar yukarıdan aşağıya doğru aranır ve ilk eşleşmeye göre bir sonraki konum seçilir.

Böyle bir geçiş sürecinde her yeni rasyonel sayı bir başka rasyonel sayıyla ilişkilendirilir. doğal sayı. Yani, 1/1 kesri 1 sayısına, 2/1 kesri 2 sayısına vb. atanır. Yalnızca indirgenemez kesirlerin numaralandırıldığına dikkat edilmelidir. İndirgenemezliğin resmi bir işareti, kesrin pay ve paydasının en büyük ortak böleninin bire eşit olmasıdır.

Bu algoritmayı takip ederek tüm pozitif rasyonel sayıları sıralayabiliriz. Bu, pozitif rasyonel sayılar kümesinin sayılabilir olduğu anlamına gelir. Pozitif ve negatif rasyonel sayılar kümeleri arasında bir eşleştirme oluşturmak, her rasyonel sayıya basitçe onun tersini atayarak kolaydır. O. Negatif rasyonel sayılar kümesi de sayılabilir. Birleşimleri aynı zamanda sayılabilir kümelerin özelliği ile de sayılabilir. Rasyonel sayılar kümesi aynı zamanda sayılabilir bir kümenin sonlu bir kümeyle birleşimi olarak da sayılabilir.

Rasyonel sayılar kümesinin sayılabilirliğiyle ilgili ifade, ilk bakışta doğal sayılar kümesinden çok daha kapsamlı gibi göründüğü için bazı karışıklıklara neden olabilir. Aslında durum böyle değildir ve tüm rasyonel sayıları saymaya yetecek kadar doğal sayı vardır.

Rasyonel sayıların eksikliği

Böyle bir üçgenin hipotenüsü hiçbir şekilde ifade edilemez. rasyonel sayı

1 / formunun rasyonel sayıları N genel olarak N keyfi olarak küçük miktarlar ölçülebilir. Bu gerçek, rasyonel sayıların herhangi bir geometrik mesafeyi ölçmek için kullanılabileceği yönünde yanıltıcı bir izlenim yaratmaktadır. Bunun doğru olmadığını göstermek kolaydır.

Pisagor teoreminden, bir dik üçgenin hipotenüsünün, dik kenarlarının kareleri toplamının karekökü olarak ifade edildiğini biliyoruz. O. bir ikizkenarın hipotenüs uzunluğu dik üçgen birim ayağı olan bir sayıya eşittir, yani karesi 2 olan bir sayıya.

Bir sayının herhangi bir rasyonel sayı ile temsil edilebileceğini varsayarsak, o zaman böyle bir tamsayı vardır. M ve böyle bir doğal sayı N, bu ve kesir indirgenemez, yani sayılar M Ve N- karşılıklı olarak basit.

Eğer öyleyse , yani M 2 = 2N 2. Bu nedenle sayı M 2 çifttir, ancak iki tek sayının çarpımı tektir, bu da sayının kendisi anlamına gelir M ayrıca hatta. Yani bir doğal sayı var k, öyle ki sayı Mşeklinde temsil edilebilir M = 2k. Sayı karesi M Bu manada M 2 = 4k 2 ama öte yandan M 2 = 2N 2, 4 anlamına gelir k 2 = 2N 2 veya N 2 = 2k 2. Sayı için daha önce gösterildiği gibi M, bu şu anlama gelir: sayı N- hatta M. Ama ikisi de ikiye bölündüğü için aralarında asal değiller. Ortaya çıkan çelişki bunun rasyonel bir sayı olmadığını kanıtlıyor.

Hayatta kesirlerle okulda çalışmaya başlamadan çok daha önce karşılaşırız. Bir elmayı tam olarak ikiye bölersek meyvenin yarısını elde ederiz. Tekrar keselim - ¼ olacak. Bunlar kesirler. Ve her şey basit görünüyordu. Bir yetişkin için. Çocuk için (ve bu konu ilkokulun sonunda çalışmaya başlar) soyut matematik kavramları hala korkutucu derecede anlaşılmazdır ve öğretmenin ne olduğunu açıkça açıklaması gerekir. uygun kesir ve düzensiz, sıradan ve ondalık, bunlarla hangi işlemlerin yapılabileceği ve en önemlisi tüm bunlara neden ihtiyaç duyulduğu.

Ne tür kesirler vardır?

Tanımak yeni Konu okulda sıradan kesirlerle başlar. Üstteki ve alttaki iki sayıyı ayıran yatay çizgiyle kolayca tanınırlar. Üsttekine pay, alttakine ise payda denir. Ayrıca uygunsuz ve uygun sıradan kesirleri eğik çizgiyle yazmak için küçük harf seçeneği de vardır, örneğin: ½, 4/9, 384/183. Bu seçenek, satır yüksekliğinin sınırlı olduğu ve “iki katlı” giriş formunun kullanılmasının mümkün olmadığı durumlarda kullanılır. Neden? Evet çünkü daha kullanışlı. Bunu biraz sonra göreceğiz.

Sıradan kesirlerin yanı sıra ondalık kesirler de vardır. Bunları ayırt etmek çok basittir: Bir durumda yatay veya eğik çizgi kullanılıyorsa, diğerinde sayı dizilerini ayırmak için virgül kullanılır. Bir örneğe bakalım: 2.9; 163.34; 1.953. Sayıları sınırlandırmak için kasıtlı olarak ayırıcı olarak noktalı virgül kullandık. Bunlardan ilki şu şekilde okunacak: "iki virgül dokuz."

Yeni konseptler

Sıradan kesirlere dönelim. İki tipte gelirler.

Düzgün kesirin tanımı şu şekildedir: Payı paydasından küçük olan kesirdir. Neden önemlidir? Şimdi göreceğiz!

Birkaç elmanız var, yarıya bölünmüş. Toplam - 5 parça. Nasıl dersiniz: "iki buçuk" veya "beş buçuk" elmanız var mı? Elbette ilk seçenek kulağa daha doğal geliyor ve bunu arkadaşlarımızla konuşurken kullanacağız. Ama her kişinin kaç meyve alacağını hesaplamamız gerekirse, şirkette beş kişi varsa 5/2 sayısını yazıp 5'e böleriz - matematiksel açıdan bu daha net anlaşılır. .

Yani, doğru ve yanlış kesirleri adlandırmak için kural şudur: Bir kesirde tam kısım ayırt edilebiliyorsa (14/5, 2/1, 173/16, 3/3), o zaman düzensizdir. ½, 13/16, 9/10 gibi bu yapılamıyorsa doğru olacaktır.

Bir kesrin temel özelliği

Bir kesrin payı ve paydası aynı sayıyla aynı anda çarpılır veya bölünürse değeri değişmez. Düşünün: pastayı 4 eşit parçaya bölüp size bir tane verdiler. Aynı pastayı sekiz parçaya bölüp sana ikisini verdiler. Gerçekten önemli mi? Sonuçta ¼ ile 2/8 aynı şeydir!

Kesinti

Matematik ders kitaplarındaki problemlerin ve örneklerin yazarları genellikle yazması zahmetli olan ancak aslında kısaltılabilen kesirler sunarak öğrencilerin kafasını karıştırmaya çalışırlar. İşte uygun bir kesir örneği: 167/334, öyle görünüyor ki, çok "korkutucu" görünüyor. Ama aslında bunu ½ olarak da yazabiliriz. 334 sayısı 167'ye kalansız bölünebilir - bu işlemi yaptıktan sonra 2 elde ederiz.

Karışık sayılar

Uygunsuz bir kesir, karışık bir sayı olarak temsil edilebilir. Bu, parçanın tamamının öne getirilerek yatay çizgi seviyesinde yazılmasıdır. Aslında ifade bir toplam şeklini alır: 11/2 = 5 + ½; 13/6 = 2 + 1/6 vb.

Parçanın tamamını çıkarmak için payı paydaya bölmeniz gerekir. Bölmenin geri kalanını en üste, çizginin üstüne ve tamamını ifadeden önce yazın. Böylece iki yapısal parça elde ederiz: tam birimler + doğru kesir.

Ters işlemi de gerçekleştirebilirsiniz - bunu yapmak için tamsayı kısmını paydayla çarpmanız ve elde edilen değeri paya eklemeniz gerekir. Karmaşık bir şey yok.

Çarpma ve bölme

İşin garibi, kesirleri çarpmak toplama yapmaktan daha kolaydır. Tek yapmanız gereken yatay çizgiyi uzatmak: (2/3) * (3/5) = 2*3 / 3*5 = 2/5.

Bölme işleminde de her şey basittir: Kesirleri çapraz olarak çarpmanız gerekir: (7/8) / (14/15) = 7*15 / 8*14 = 15/16.

Kesirleri Ekleme

Toplama işlemi yapmanız gerekiyorsa veya paydası ise ne yapmalısınız? farklı sayılar? Çarpma işleminde olduğu gibi aynısını yapmak işe yaramayacaktır - burada uygun kesirin tanımını ve özünü anlamalısınız. Terimleri ortak bir paydaya getirmek gerekiyor, yani her iki kesrin tabanının aynı sayılara sahip olması gerekiyor.

Bunu yapmak için kesirin temel özelliğini kullanmalısınız: her iki parçayı da aynı sayıyla çarpın. Örneğin, 2/5 + 1/10 = (2*2)/(5*2) + 1/10 = 5/10 = ½.

Terimlerin hangi paydaya indirileceği nasıl seçilir? Bu, kesirlerin paydalarındaki her iki sayının katı olan minimum sayı olmalıdır: 1/3 ve 1/9 için 9 olacaktır; ½ ve 1/7 - 14 için, çünkü 2 ve 7'ye kalansız bölünebilen daha küçük bir değer yoktur.

Kullanım

Uygun olmayan kesirler ne için kullanılır? Sonuçta, tüm parçayı hemen seçmek, karışık bir sayı elde etmek ve bu işi bitirmek çok daha uygundur! İki kesri çarpmanız veya bölmeniz gerekiyorsa, düzensiz olanları kullanmanın daha karlı olduğu ortaya çıktı.

Şu örneği ele alalım: (2 + 3/17) / (37/68).

Görünüşe göre kesilecek hiçbir şey yok. Peki ya toplama sonucunu ilk parantez içine bileşik kesir olarak yazarsak? Bak: (37/17) / (37/68)

Artık her şey yerine oturuyor! Örneği her şey belli olacak şekilde yazalım: (37*68) / (17*37).

Pay ve paydadaki 37'yi iptal edelim ve son olarak üst ve alt kısmı 17'ye bölelim. Doğru ve yanlış kesirlerin temel kuralını hatırlıyor musunuz? Pay ve payda için aynı anda yaptığımız sürece bunları herhangi bir sayıyla çarpabilir ve bölebiliriz.

Böylece cevabı alıyoruz: 4. Örnek karmaşık görünüyordu, ancak cevap yalnızca bir sayı içeriyor. Bu matematikte sıklıkla olur. Önemli olan korkmamak ve basit kurallara uymaktır.

Yaygın hatalar

Uygulama yaparken öğrenci sık yapılan hatalardan birini kolaylıkla yapabilir. Genellikle dikkatsizlik nedeniyle ve bazen de çalışılan materyalin henüz kafada uygun şekilde saklanmaması nedeniyle ortaya çıkarlar.

Çoğu zaman paydaki sayıların toplamı, tek tek bileşenlerini azaltmak istemenize neden olur. Örnekte diyelim ki: (13 + 2) / 13, parantezsiz (yatay çizgiyle) yazılmış, birçok öğrenci deneyimsizlik nedeniyle üstte ve altta 13'ü çiziyor. Ancak bu hiçbir koşulda yapılmamalıdır çünkü bu büyük bir hatadır! Toplama yerine çarpma işareti olsaydı cevapta 2 sayısını alırdık. Ancak toplama yaparken terimlerden biriyle hiçbir işlem yapılmasına izin verilmez, yalnızca toplamın tamamıyla işlem yapılmasına izin verilir.

Erkekler ayrıca kesirleri bölerken sıklıkla hata yaparlar. İndirgenemeyen iki tam kesir alıp birbirine bölelim: (5/6) / (25/33). Öğrenci bunu karıştırıp ortaya çıkan ifadeyi (5*25) / (6*33) şeklinde yazabilir. Ancak çarpma işleminde bu olur ama bizim durumumuzda her şey biraz farklı olacaktır: (5*33) / (6*25). Mümkün olanı azaltıyoruz ve cevap 11/10 olacak. Ortaya çıkan uygunsuz kesri ondalık sayı olarak yazıyoruz - 1.1.

Parantez

Herhangi bir matematiksel ifadede işlem sırasının, operatör işaretlerinin önceliğine ve parantezlerin varlığına göre belirlendiğini unutmayın. Diğer her şey eşit olduğunda eylemlerin sırası soldan sağa doğru sayılır. Bu aynı zamanda kesirler için de geçerlidir - pay veya paydadaki ifade kesinlikle bu kurala göre hesaplanır.

Sonuçta bu, bir sayının diğerine bölünmesinin sonucudur. Eşit olarak bölünmezlerse, kesir haline gelir - hepsi bu.

Bilgisayarda kesir nasıl yazılır

Standart araçlar her zaman iki “katmandan” oluşan bir kesir oluşturmaya izin vermediğinden, öğrenciler bazen çeşitli hilelere başvururlar. Örneğin pay ve paydaları Paint grafik düzenleyicisine kopyalayıp birbirine yapıştırarak aralarında yatay bir çizgi çiziyorlar. Tabii ki, daha basit bir seçenek var, bu arada, pek çok şey sağlıyor Ek özellikler gelecekte işinize yarayacak.

Microsoft Word'ü açın. Ekranın üst kısmındaki panellerden birine "Ekle" denir - tıklayın. Sağ tarafta pencereyi kapat ve simge durumuna küçült simgelerinin bulunduğu tarafta “Formül” butonu bulunmaktadır. Tam olarak ihtiyacımız olan şey bu!

Bu işlevi kullanırsanız, ekranda klavyede olmayan herhangi bir matematik sembolünü kullanabileceğiniz ve kesirleri yazabileceğiniz dikdörtgen bir alan görünecektir. klasik görünüm. Yani pay ve paydayı yatay bir çizgiyle bölmek. Böyle bir düzgün kesirin yazılmasının bu kadar kolay olmasına bile şaşırabilirsiniz.

Matematik öğren

Eğer 5-6. Sınıftaysanız, yakında birçok okul dersinde matematik bilgisi (kesirlerle çalışma yeteneği dahil!) gerekli olacaktır. Fizikteki hemen hemen her problemde, kimyada, geometride ve trigonometride maddelerin kütlesini ölçerken kesirler olmadan yapamazsınız. Yakında, ifadeleri kağıda bile yazmadan, her şeyi zihninizde hesaplamayı öğreneceksiniz, ama giderek daha fazlasını öğreneceksiniz. karmaşık örnekler. Bu nedenle, doğru kesirin ne olduğunu ve onunla nasıl çalışılacağını öğrenin. Müfredat, ödevinizi zamanında yapın ve başaracaksınız.


Bu makale hakkındadır ortak kesirler. Burada bir bütünün kesri kavramını tanıtacağız, bu da bizi ortak bir kesrin tanımına götürecektir. Daha sonra sıradan kesirler için kabul edilen gösterim üzerinde duracağız ve kesir örnekleri vereceğiz, diyelim ki bir kesrin payı ve paydası hakkında. Bundan sonra doğru ve yanlış kesirlerin, pozitif ve negatif kesirlerin tanımlarını vereceğiz ve kesirli sayıların kesirlerdeki konumunu ele alacağız. koordinat ışını. Sonuç olarak ana işlemleri kesirlerle listeliyoruz.

Sayfada gezinme.

Bütünün payları

İlk önce tanıtıyoruz paylaşma kavramı.

Tamamen aynı (yani eşit) birkaç parçadan oluşan bir nesnemiz olduğunu varsayalım. Netlik sağlamak için, örneğin birkaç parçaya bölünmüş bir elma hayal edebilirsiniz. eşit parçalar veya birkaç eşit parçadan oluşan bir portakal. Bir cismin tamamını oluşturan bu eşit parçaların her birine ne ad verilir? bütünün parçaları ya da sadece hisseler.

Paylaşımların farklı olduğunu unutmayın. Bunu açıklayalım. İki elmamız olsun. İlk elmayı iki eşit parçaya, ikincisini ise 6 eşit parçaya bölün. Birinci elmanın payının ikinci elmanın payından farklı olacağı açıktır.

Nesnenin tamamını oluşturan paylaşımların sayısına bağlı olarak bu paylaşımların kendi isimleri vardır. Hadi halledelim vuruş isimleri. Bir nesne iki parçadan oluşuyorsa bunlardan herhangi birine tüm nesnenin ikinci parçası denir; eğer bir nesne üç parçadan oluşuyorsa, bunlardan herhangi birine üçüncü parça denir vb.

Bir saniyelik paylaşımın özel bir adı vardır - yarım. Üçte biri denir üçüncü ve çeyrek kısım - çeyrek.

Kısaltmak adına aşağıdakiler tanıtıldı: sembolleri yenmek. İkinci bir pay veya 1/2, üçüncü bir pay veya 1/3 olarak belirlenir; dörtte bir pay - beğen veya 1/4 vb. Yatay çubuklu gösterimin daha sık kullanıldığını unutmayın. Konuyu pekiştirmek için bir örnek daha verelim: Madde bütünün yüz altmış yedinci parçasını ifade ediyor.

Paylaşım kavramı doğal olarak nesnelerden miktarlara kadar uzanır. Örneğin uzunluk ölçülerinden biri metredir. Bir metreden daha kısa uzunlukları ölçmek için bir metrenin kesirleri kullanılabilir. Yani örneğin yarım metreyi veya metrenin onda birini veya binde birini kullanabilirsiniz. Diğer miktarların payları da benzer şekilde uygulanır.

Ortak kesirler, kesirlerin tanımı ve örnekleri

Kullandığımız hisse sayısını açıklamak için ortak kesirler. Adi kesirlerin tanımına yaklaşmamızı sağlayacak bir örnek verelim.

Portakalın 12 parçadan oluşmasına izin verin. Bu durumda her pay bir tam portakalın on ikide birini temsil eder, yani. İki atım olarak, üç atım olarak ve bu şekilde 12 atım olarak belirtiyoruz. Verilen girdilerin her birine sıradan kesir denir.

Şimdi bir genel bilgi verelim ortak kesirlerin tanımı.

Sıradan kesirlerin sesli tanımı şunu vermemizi sağlar: ortak kesir örnekleri: 5/10, , 21/1, 9/4, . Ve işte kayıtlar sıradan kesirlerin belirtilen tanımına uymazlar, yani sıradan kesirler değildirler.

Pay ve payda

Kolaylık sağlamak için sıradan kesirler ayırt edilir pay ve payda.

Tanım.

Pay sıradan kesir (m/n), bir m doğal sayısıdır.

Tanım.

Payda ortak kesir (m/n) bir doğal sayıdır n.

Yani pay, kesir çizgisinin üstünde (eğik çizginin solunda) ve payda, kesir çizgisinin altında (eğik çizginin sağında) bulunur. Örneğin 17/29 ortak kesirini ele alalım, bu kesrin payı 17, paydası ise 29 sayısıdır.

Sıradan bir kesrin pay ve paydasında yer alan anlamı tartışmaya devam ediyor. Bir kesrin paydası bir nesnenin kaç parçadan oluştuğunu gösterir ve pay da bu parçaların sayısını gösterir. Örneğin 12/5 kesirinin paydası 5, bir nesnenin beş paydan oluştuğunu, payı 12 ise bu tür 12 payın alındığı anlamına gelir.

Paydası 1 olan kesir olarak doğal sayı

Ortak bir kesrin paydası bire eşit olabilir. Bu durumda nesnenin bölünemez olduğunu yani bir bütünü temsil ettiğini düşünebiliriz. Böyle bir kesrin payı kaç tane tam nesnenin alındığını gösterir. Dolayısıyla m/1 formundaki sıradan bir kesir, m doğal sayısı anlamına gelir. m/1=m eşitliğinin geçerliliğini bu şekilde kanıtladık.

Son eşitliği şu şekilde yeniden yazalım: m=m/1. Bu eşitlik herhangi bir m doğal sayısını sıradan bir kesir olarak temsil etmemizi sağlar. Örneğin 4 sayısı 4/1 kesridir ve 103.498 sayısı 103.498/1 kesrine eşittir.

Bu yüzden, herhangi bir m doğal sayısı, m/1 olarak paydası 1 olan sıradan bir kesir olarak temsil edilebilir ve m/1 formundaki herhangi bir sıradan kesir, bir m doğal sayısı ile değiştirilebilir..

Bölme işareti olarak kesir çubuğu

Orijinal nesneyi n pay şeklinde temsil etmek, n ​​eşit parçaya bölmekten başka bir şey değildir. Bir öğe n hisseye bölündükten sonra, onu n kişiye eşit olarak bölebiliriz - her biri bir pay alacaktır.

Başlangıçta her biri n parçaya bölünmüş m adet özdeş nesnemiz varsa, o zaman bu m nesneyi n kişi arasında eşit olarak bölebilir ve her kişiye m nesnenin her birinden bir pay verebiliriz. Bu durumda, her kişi m adet 1/n hisseye sahip olacaktır ve m adet 1/n hisse, m/n ortak kesirini verecektir. Böylece, m/n ortak kesri, m öğenin n kişi arasında bölünmesini belirtmek için kullanılabilir.

Sıradan kesirler ile bölme arasında açık bir bağlantıyı bu şekilde elde ettik (doğal sayıları bölmenin genel fikrine bakın). Bu bağlantı şu şekilde ifade edilir: kesir çizgisi bir bölme işareti olarak anlaşılabilir, yani m/n=m:n.

Sıradan bir kesir kullanarak, tam bölme işlemi yapılamayan iki doğal sayının bölünmesinin sonucunu yazabilirsiniz. Örneğin 5 elmayı 8 kişiye bölmenin sonucu 5/8 olarak yazılabilir, yani herkes bir elmanın sekizde beşini alacaktır: 5:8 = 5/8.

Eşit ve eşit olmayan kesirler, kesirlerin karşılaştırılması

Oldukça doğal bir eylem kesirleri karşılaştırmaÇünkü bir portakalın 1/12'sinin 5/12'sinden farklı olduğu ve bir elmanın 1/6'sının bu elmanın diğer 1/6'sıyla aynı olduğu açıktır.

İki sıradan kesirin karşılaştırılması sonucunda şu sonuçlardan biri elde edilir: Kesirler ya eşittir ya da eşit değildir. İlk durumda elimizde eşit ortak kesirler ve ikincisinde – eşit olmayan sıradan kesirler. Eşit ve eşit olmayan sıradan kesirlerin tanımını verelim.

Tanım.

eşit a·d=b·c eşitliği doğruysa.

Tanım.

İki ortak kesir a/b ve c/d eşit değil a·d=b·c eşitliği sağlanmıyorsa.

İşte eşit kesirlerin bazı örnekleri. Örneğin, 1·4=2·2 olduğundan ortak kesir 1/2, 2/4 kesrine eşittir (gerekirse, doğal sayılarla çarpma kurallarına ve örneklerine bakın). Netlik sağlamak için, iki özdeş elmayı hayal edebilirsiniz, birincisi ikiye bölünmüş, ikincisi ise 4 parçaya bölünmüştür. Bir elmanın dörtte ikisinin 1/2 paya eşit olduğu açıktır. Eşit ortak kesirlerin diğer örnekleri 4/7 ve 36/63 kesirleri ve 81/50 ve 1.620/1.000 kesir çiftidir.

Ancak 4/13 ve 5/14 sıradan kesirleri eşit değildir, çünkü 4·14=56 ve 13·5=65, yani 4·14≠13·5. Eşit olmayan ortak kesirlerin diğer örnekleri 17/7 ve 6/4 kesirleridir.

İki ortak kesiri karşılaştırırken eşit olmadıkları ortaya çıkarsa, bu ortak kesirlerden hangisinin olduğunu bulmanız gerekebilir. az farklı ve hangisi - Daha. Bunu bulmak için, sıradan kesirleri karşılaştırma kuralı kullanılır; bunun özü, karşılaştırılan kesirleri ortak bir paydaya getirmek ve ardından payları karşılaştırmaktır. Bu konuyla ilgili ayrıntılı bilgi, kesirlerin karşılaştırılması makalesinde toplanmıştır: kurallar, örnekler, çözümler.

Kesirli sayılar

Her kesir bir gösterimdir kesirli sayı. Yani kesir, kesirli bir sayının yalnızca bir "kabuğudur"; dış görünüş ve tüm anlamsal yük kesirli sayıda bulunur. Bununla birlikte, kısalık ve kolaylık sağlamak için kesir ve kesirli sayı kavramları birleştirilir ve basitçe kesir olarak adlandırılır. Burada iyi bilinen bir sözü başka kelimelerle ifade etmek yerinde olacaktır: Kesir diyoruz - kesirli bir sayıyı kastediyoruz, kesirli bir sayı diyoruz - bir kesiri kastediyoruz.

Koordinat ışınındaki kesirler

Sıradan kesirlere karşılık gelen tüm kesirli sayıların kendine özgü bir yeri vardır, yani kesirler ile koordinat ışınının noktaları arasında bire bir yazışma vardır.

Koordinat ışınında m/n oranına karşılık gelen noktaya ulaşmak için, uzunluğu bir birim parçanın 1/n kesri kadar olan m parçayı orijinden pozitif yönde ayırmanız gerekir. Bu tür bölümler, bir birim parçanın n eşit parçaya bölünmesiyle elde edilebilir; bu her zaman bir pergel ve bir cetvel kullanılarak yapılabilir.

Örneğin koordinat ışınında 14/10 kesrine karşılık gelen M noktasını gösterelim. Uçları O noktasında ve ona en yakın nokta olan küçük çizgi ile işaretlenmiş bir doğru parçasının uzunluğu, bir birim parçanın 1/10'udur. 14/10 koordinatına sahip nokta, başlangıç ​​noktasından bu tür 14 parça uzaklıkta kaldırılır.

Eşit kesirler aynı kesirli sayıya karşılık gelir, yani eşit kesirler koordinat ışınındaki aynı noktanın koordinatlarıdır. Örneğin, 1/2, 2/4, 16/32, 55/110 koordinatları, tüm yazılı kesirler eşit olduğundan koordinat ışınındaki bir noktaya karşılık gelir (bir birim parçanın yarısı kadar bir mesafede bulunur) orijinden pozitif yönde).

Yatay ve sağa yönlendirilmiş bir koordinat ışınında, koordinatı daha büyük olan nokta, koordinatı daha küçük olan noktanın sağında bulunur. Benzer şekilde koordinatı daha küçük olan bir nokta, koordinatı daha büyük olan bir noktanın solunda yer alır.

Doğru ve yanlış kesirler, tanımlar, örnekler

Sıradan kesirler arasında şunlar vardır: doğru ve yanlış kesirler. Bu bölme pay ve paydanın karşılaştırılmasına dayanmaktadır.

Doğru ve yanlış sıradan kesirleri tanımlayalım.

Tanım.

Uygun kesir payı paydasından küçük olan sıradan bir kesirdir, yani eğer m

Tanım.

Uygunsuz kesir payın paydadan büyük veya ona eşit olduğu sıradan bir kesirdir; yani m≥n ise sıradan kesir uygunsuzdur.

İşte bazı doğru kesir örnekleri: 1/4, , 32,765/909,003. Aslında, yazılı sıradan kesirlerin her birinde pay, paydadan küçüktür (gerekirse, doğal sayıları karşılaştıran makaleye bakın), dolayısıyla tanım gereği doğrudurlar.

İşte uygunsuz kesirlerin örnekleri: 9/9, 23/4, . Nitekim yazılı adi kesirlerden birincisinin payı paydaya eşittir, geri kalan kesirlerde ise pay paydadan büyüktür.

Kesirlerin bir ile karşılaştırılmasına dayanan doğru ve yanlış kesirlerin tanımları da vardır.

Tanım.

doğru birden küçükse.

Tanım.

Sıradan bir kesir denir yanlış 1'e eşit veya 1'den büyükse.

Yani 7/11 ortak kesri doğrudur, çünkü 7/11<1 , а обыкновенные дроби 14/3 и 27/27 – неправильные, так как 14/3>1 ve 27/27=1.

Paydası paydadan büyük veya paydaya eşit olan sıradan kesirlerin nasıl böyle bir adı hak ettiğini düşünelim - "uygunsuz".

Örneğin 9/9 bileşik kesirini ele alalım. Bu kesir, dokuz parçadan oluşan bir cismin dokuz parçasının alınması anlamına gelir. Yani elimizdeki dokuz parçadan bütün bir nesneyi oluşturabiliriz. Yani, uygunsuz kesir 9/9 esasen maddenin tamamını verir, yani 9/9=1. Genel olarak, payı paydaya eşit olan uygunsuz kesirler bir tam nesneyi belirtir ve böyle bir kesir, doğal sayı 1 ile değiştirilebilir.

Şimdi 7/3 ve 12/4 bileşik kesirlerini düşünün. Bu yedi üçüncü parçadan iki tam nesne oluşturabileceğimiz oldukça açıktır (bir tam nesne 3 parçadan oluşur, o zaman iki tam nesneyi birleştirmek için 3 + 3 = 6 parçaya ihtiyacımız olacaktır) ve yine de üçte bir parça olacaktır. kısmı kaldı. Yani, bileşik kesir olan 7/3, aslında 2 nesne ve ayrıca böyle bir nesnenin 1/3'ü anlamına gelir. Ve on iki çeyrek parçadan üç tam nesne (her biri dört parçalı üç nesne) yapabiliriz. Yani 12/4 kesri aslında 3 tam nesne anlamına gelir.

Ele alınan örnekler bizi şu sonuca götürüyor: uygunsuz kesirler, pay paydaya eşit olarak bölündüğünde doğal sayılarla (örneğin, 9/9=1 ve 12/4=3) veya toplamla değiştirilebilir. Payın paydaya tam olarak bölünemediği durumlarda bir doğal sayı ve uygun kesir (örneğin, 7/3=2+1/3). Belki de tam da bu, uygunsuz kesirlere "düzensiz" adını kazandıran şeydir.

Özellikle ilgi çekici olan, uygun olmayan bir kesrin bir doğal sayı ile bir uygun kesirin (7/3=2+1/3) toplamı olarak temsil edilmesidir. Bu işleme, tüm parçayı uygunsuz bir kesirden ayırmak denir ve ayrı ve daha dikkatli bir değerlendirmeyi hak eder.

Uygunsuz kesirler ile karışık sayılar arasında çok yakın bir ilişki olduğunu da belirtmekte fayda var.

Pozitif ve negatif kesirler

Her ortak kesir, pozitif bir kesirli sayıya karşılık gelir (pozitif ve negatif sayılar hakkındaki makaleye bakın). Yani sıradan kesirler pozitif kesirler. Örneğin 1/5, 56/18, 35/144 sıradan kesirler pozitif kesirlerdir. Bir kesrin pozitifliğini vurgulamanız gerektiğinde önüne bir artı işareti yerleştirilir, örneğin +3/4, +72/34.

Ortak bir kesrin önüne eksi işareti koyarsanız, bu giriş negatif bir kesirli sayıya karşılık gelecektir. Bu durumda konuşabiliriz negatif kesirler. Negatif kesirlerin bazı örnekleri şunlardır: −6/10, −65/13, −1/18.

Pozitif ve negatif kesirler m/n ve −m/n zıt sayılardır. Örneğin 5/7 ve −5/7 kesirleri zıt kesirlerdir.

Pozitif kesirler, genel olarak pozitif sayılar gibi, bir eklemeyi, geliri, herhangi bir değerdeki yukarı doğru değişimi vb. ifade eder. Negatif kesirler gidere, borca ​​veya herhangi bir miktardaki azalmaya karşılık gelir. Örneğin, negatif kesir −3/4, değeri 3/4'e eşit olan bir borç olarak yorumlanabilir.

Yatay ve sağa doğru negatif kesirler orijinin solunda bulunur. Koordinatları pozitif kesir m/n ve negatif kesir -m/n olan koordinat çizgisinin noktaları, orijinden aynı uzaklıkta, ancak O noktasının zıt taraflarında bulunur.

Burada 0/n formundaki kesirlerden bahsetmeye değer. Bu kesirler sıfır sayısına eşittir yani 0/n=0.

Pozitif kesirler, negatif kesirler ve 0/n kesirler birleşerek rasyonel sayılar oluşturur.

Kesirlerle işlemler

Yukarıda sıradan kesirlerle ilgili bir eylemi - kesirleri karşılaştırarak - tartışmıştık. Dört aritmetik fonksiyon daha tanımlandı kesirlerle işlemler– Kesirlerde toplama, çıkarma, çarpma ve bölme. Her birine bakalım.

Kesirli işlemlerin genel özü, doğal sayılarla karşılık gelen işlemlerin özüne benzer. Bir benzetme yapalım.

Kesirlerin Çarpılması kesirden kesir bulma eylemi olarak düşünülebilir. Açıklığa kavuşturmak için bir örnek verelim. Bir elmanın 1/6'sını alalım, 2/3'ünü almamız lazım. İhtiyacımız olan kısım 1/6 ve 2/3 kesirlerinin çarpılması sonucudur. İki sıradan kesirin çarpılmasının sonucu, sıradan bir kesirdir (özel bir durumda bu, bir doğal sayıya eşittir). Daha sonra Kesirlerde Çarpma - Kurallar, Örnekler ve Çözümler makalesindeki bilgileri incelemenizi öneririz.

Kaynakça.

  • Vilenkin N.Ya., Zhokhov V.I., Chesnokov A.S., Shvartsburd S.I. Matematik: 5. sınıf ders kitabı. Eğitim Kurumları.
  • Vilenkin N.Ya. ve diğerleri. 6. sınıf: genel eğitim kurumları için ders kitabı.
  • Gusev V.A., Mordkovich A.G. Matematik (teknik okullara girenler için bir el kitabı).

Uygunsuz kesir

Çeyrekler

  1. Düzenlilik. A Ve B Aralarındaki üç ilişkiden yalnızca birini benzersiz şekilde tanımlamanıza olanak tanıyan bir kural vardır: "< », « >" veya " = ". Bu kurala denir sıralama kuralı ve şu şekilde formüle edilir: negatif olmayan iki sayı ve iki tam sayı ve ile aynı ilişkiyle ilişkilidir; pozitif olmayan iki sayı A Ve B negatif olmayan iki sayı ile aynı ilişkiyle ilişkilidir ve ; eğer aniden A olumsuz değil ama B- o zaman negatif A > B. src="/pictures/wiki/files/57/94586b8b651318d46a00db5413cf6c15.png" border="0">

    Kesirleri Ekleme

  2. Ekleme işlemi. Herhangi bir rasyonel sayı için A Ve B sözde var toplama kuralı C. Aynı zamanda sayının kendisi C isminde miktar sayılar A Ve B ve ile gösterilir ve böyle bir sayıyı bulma işlemine denir toplam. Toplama kuralı aşağıdaki forma sahiptir: .
  3. Çarpma işlemi. Herhangi bir rasyonel sayı için A Ve B sözde var çarpma kuralı onlara bazı rasyonel sayılar atar C. Aynı zamanda sayının kendisi C isminde sayılar A Ve B ve ile gösterilir ve böyle bir sayıyı bulma işlemine de denir çarpma işlemi. Çarpma kuralı şuna benzer: .
  4. Sıra ilişkisinin geçişliliği. Herhangi bir rasyonel sayı üçlüsü için A , B Ve C Eğer A az B Ve B az C, O A az C, ve eğer A eşittir B Ve B eşittir C, O A eşittir C. 6435">Toplamanın değişmezliği. Rasyonel terimlerin yerlerinin değiştirilmesi toplamı değiştirmez.
  5. Eklemenin ilişkilendirilebilirliği.Üç rasyonel sayının toplanma sırası sonucu etkilemez.
  6. Sıfır varlığı. Toplandığında diğer tüm rasyonel sayıları koruyan bir rasyonel sayı 0 vardır.
  7. Zıt sayıların varlığı. Herhangi bir rasyonel sayının, kendisine eklendiğinde 0 veren zıt bir rasyonel sayı vardır.
  8. Çarpmanın değişme özelliği. Rasyonel faktörlerin yerlerinin değiştirilmesi ürünü değiştirmez.
  9. Çarpmanın ilişkilendirilebilirliği.Üç rasyonel sayının çarpılma sırası sonucu etkilemez.
  10. Birimin kullanılabilirliği.Çarpıldığında diğer tüm rasyonel sayıları koruyan bir rasyonel sayı 1 vardır.
  11. Karşılıklı sayıların varlığı. Herhangi bir rasyonel sayının, ile çarpıldığında 1 veren bir ters rasyonel sayısı vardır.
  12. Çarpmanın toplamaya göre dağılımı.Çarpma işlemi, dağıtım yasası aracılığıyla toplama işlemiyle koordine edilir:
  13. Sıra ilişkisinin toplama işlemiyle bağlantısı. Rasyonel bir eşitsizliğin sol ve sağ taraflarına aynı rasyonel sayı eklenebilir. /pictures/wiki/files/51/358b88fcdff63378040f8d9ab9ba5048.png" border="0">
  14. Arşimet Aksiyomu. Rasyonel sayı ne olursa olsun A, toplamları aşacak kadar çok birim alabilirsiniz A. src="/pictures/wiki/files/55/70c78823302483b6901ad39f68949086.png" border="0">

Ek özellikler

Rasyonel sayıların doğasında bulunan diğer tüm özellikler temel özellikler olarak ayırt edilmez, çünkü genel olarak konuşursak, bunlar artık doğrudan tam sayıların özelliklerine dayanmaz, ancak verilen temel özelliklere dayanarak veya doğrudan bazı matematiksel nesnelerin tanımıyla kanıtlanabilirler. . Bunun gibi pek çok ek özellik var. Bunlardan sadece birkaçını burada listelemek anlamlı olacaktır.

Src="/pictures/wiki/files/48/0caf9ffdbc8d6264bc14397db34e8d72.png" border="0">

Bir kümenin sayılabilirliği

Rasyonel sayıların numaralandırılması

Rasyonel sayıların sayısını tahmin etmek için kümelerinin önem derecesini bulmanız gerekir. Rasyonel sayılar kümesinin sayılabilir olduğunu kanıtlamak kolaydır. Bunu yapmak için rasyonel sayıları sıralayan, yani rasyonel ve doğal sayılar kümeleri arasında bir eşleştirme kuran bir algoritma vermek yeterlidir.

Bu algoritmaların en basiti şuna benzer. Her birinde sıradan kesirlerden oluşan sonsuz bir tablo derlenir. Ben her birinde -inci satır J kesrin bulunduğu inci sütun. Kesinlik açısından bu tablonun satır ve sütunlarının birden başlayarak numaralandırıldığı varsayılmaktadır. Tablo hücreleri ile gösterilir; burada Ben- hücrenin bulunduğu tablo satırının numarası ve J- sütun numarası.

Ortaya çıkan tablo, aşağıdaki resmi algoritmaya göre bir "yılan" kullanılarak geçilir.

Bu kurallar yukarıdan aşağıya doğru aranır ve ilk eşleşmeye göre bir sonraki konum seçilir.

Böyle bir geçiş sürecinde her yeni rasyonel sayı başka bir doğal sayıyla ilişkilendirilir. Yani, 1/1 kesri 1 sayısına, 2/1 kesri 2 sayısına vb. atanır. Yalnızca indirgenemez kesirlerin numaralandırıldığına dikkat edilmelidir. İndirgenemezliğin resmi bir işareti, kesrin pay ve paydasının en büyük ortak böleninin bire eşit olmasıdır.

Bu algoritmayı takip ederek tüm pozitif rasyonel sayıları sıralayabiliriz. Bu, pozitif rasyonel sayılar kümesinin sayılabilir olduğu anlamına gelir. Pozitif ve negatif rasyonel sayılar kümeleri arasında bir eşleştirme oluşturmak, her rasyonel sayıya basitçe onun tersini atayarak kolaydır. O. Negatif rasyonel sayılar kümesi de sayılabilir. Birleşimleri aynı zamanda sayılabilir kümelerin özelliği ile de sayılabilir. Rasyonel sayılar kümesi aynı zamanda sayılabilir bir kümenin sonlu bir kümeyle birleşimi olarak da sayılabilir.

Rasyonel sayılar kümesinin sayılabilirliğiyle ilgili ifade, ilk bakışta doğal sayılar kümesinden çok daha kapsamlı gibi göründüğü için bazı karışıklıklara neden olabilir. Aslında durum böyle değildir ve tüm rasyonel sayıları saymaya yetecek kadar doğal sayı vardır.

Rasyonel sayıların eksikliği

Böyle bir üçgenin hipotenüsü herhangi bir rasyonel sayıyla ifade edilemez.

1 / formunun rasyonel sayıları N genel olarak N keyfi olarak küçük miktarlar ölçülebilir. Bu gerçek, rasyonel sayıların herhangi bir geometrik mesafeyi ölçmek için kullanılabileceği yönünde yanıltıcı bir izlenim yaratmaktadır. Bunun doğru olmadığını göstermek kolaydır.

Pisagor teoreminden, bir dik üçgenin hipotenüsünün, dik kenarlarının kareleri toplamının karekökü olarak ifade edildiğini biliyoruz. O. Birim kenarlı bir ikizkenar dik üçgenin hipotenüsünün uzunluğu, yani karesi 2 olan sayıya eşittir.

Bir sayının herhangi bir rasyonel sayı ile temsil edilebileceğini varsayarsak, o zaman böyle bir tamsayı vardır. M ve böyle bir doğal sayı N, bu ve kesir indirgenemez, yani sayılar M Ve N- karşılıklı olarak basit.